```
//Robert Managad
//Section E
//rmanagad@andrew.cmu.edu
//Project-07
var nPoints = 850
function setup() {
createCanvas(400, 400);
frameRate(25);
}
function draw() {
//color set-up
var r = map(mouseX, 0, width, 160, 200);
var g = map(mouseY, 0, height, 20, 60);
var b = map(mouseY, 0, height, 20, 60);
noFill();
//modification of background and strokecolours
background(2, g, b);
stroke(r, g, 47);
strokeWeight(0.5);
translate(width/2, height/2);
Hypotrochoid();
}
function Hypotrochoid (){
// equations for recollection
// x= (a-b)cost + hcos(((a-b)/b) * theta)
// y= (a-b)sint + hsin(((a-b)/b) * theta)
var x;
var y;
var h = 200;
//variables to modify displacement from center.
var a = map(mouseX, 0, width, 0, 10);
var b = map(mouseY, 0, height, 0, 15);
var c = map(mouseX, 0, width, 0, 5);
var d = map(mouseX, 0, width, 0, 50);
beginShape();
for(var i = 0; i < 500; i ++) {
var theta = map(i, 0, width/2, 0, 360);
x = (a - b) * cos(theta) + h * cos(((a - b)/b) * theta);
y = (a - b) * sin(theta) - h * sin(((a - b)/b) * theta);
vertex(x , y);
}
endShape();
beginShape();
for(var i = 0; i < nPoints; i ++) {
var theta = map(i, 0, width, 0, 360);
x = (c - d) * cos(theta) + h * cos(((c - d)/d) * theta);
y = (c - d) * sin(theta) - h * sin(((c - d)/d) * theta);
vertex(x + noise(2) * width/3, y + noise(2) * width/3);
}
endShape();
}
```

My primary goal for this project was familiarizing myself with curve equations, and their applications to existing shape structures. My first attempt with a conchoid was unsuccessful — I was not able to produce a visible result — so I moved on to hypotrochoids and applied similar plans to it. Below are curve sketches I examined to contribute to my final program: