

15-104 Fall 2016 November 15, 2016

 - 1 -

Lab Exam 3
There are 2 problems for you to solve. Please read all the instructions carefully.

We strongly advise you to do everything exactly step-by-step.
If you get stuck, you’ll get partial credit for partial work -- so move on to another problem.
Please observe these restrictions, which our proctors will be monitoring:

● No browsing the Internet (including the online p5.js reference).
● No browsing local files for code, documentation, or other material.

All work should be based on a provided starting template.
You can download a “starter” template, containing part-a/sketch.js and part-
b/sketch.js from: http://bit.ly/2g7LFSL
Your solutions should be uploaded to Autolab as .zip files in the usual way.

15-104 Fall 2016 November 15, 2016

 - 2 -

Some Useful p5.js Functions
createCanvas(w, h); create a canvas with the given dimensions
width the width of the canvas, once it has been created
height the height of the canvas, once it has been created
key the last key typed
background(r, g, b); fill/erase the canvas with an RGB color
background(grayLevel); fill/erase the canvas with a grayscale value

rect(x, y, w, h); draw a rectangle
ellipse(x, y, w, h); draw an ellipse or circle
line(x1, y1, x2, y2); draw a line
point(x1, y1); draw a point (size will be determined by strokeWeight)
rectMode(mode); mode can be CENTER, RADIUS, CORNER, or CORNERS
ellipseMode(mode); mode can be CENTER, RADIUS, CORNER, or CORNERS
colorMode(HSB); change fill(), stroke(), background(), and color() to use HSB system
fill(r, g, b); set the fill color for subsequent shapes to the color (r,g,b)
fill(grayLevel); set the fill color for subsequent shapes to the specified graylevel
stroke(r, g, b); set the color for subsequent lines or borders, to the color (r,g,b)
stroke(grayLevel); set the color for subsequent lines or borders, to the graylevel
noFill(); choose that subsequent shapes will be drawn with no fill
noStroke(); choose that subsequent shapes will be drawn with no border
strokeWeight(pixels); set the thickness for subsequent lines or borders

push(); save the current graphics transformation settings
pop(); restore the most-recently saved transformation settings
translate(x, y); translate subsequent drawing by offsets x and y
scale(x, y); scale by factors x and y (from the origin)
rotate(radians(degrees)); rotate by degrees (around the origin)

random(x); get a random number between 0 and x
random(low, high); get a random number in the range between low and high values
min(a, b); get the lesser of the two numbers, a and b
max(a, b); get the greater of the two numbers, a and b
map(val, inLo, inHi, outLo, outHi); linearly re-maps a number, whose current
 range extends from inLo to inHi, to a new ‘target’ range, which extends from outLo to outHi.

function setup(){...} a handler for what happens when the sketch first starts
function draw(){...} a handler for what happens when the screen is refreshed
function keyPressed(){...} a handler for what happens when the user presses a key
function mousePressed(){...} a handler for what happens when the user clicks the mouse
noLoop(); disables continuous updating; draw() is executed only once.
mouseIsPressed, mouseX, mouseY mouse input variables are updated before draw() is called

operators: and: && or: ||

equality test: == or === (for now, don’t sweat the difference)
 inequality test: != or !==

comparisons: > < >= <=

15-104 Fall 2016 November 15, 2016

 - 3 -

Problem A: Turtle Race
A. Modify the part-a/sketch.js file to implement a “Turtle Race” as shown in the

following image:

B. Note that the turtle API is documented in the template sketch code. Do not use methods

turnToward() or goto(), whose documentation has been removed.
C. (For an overview and grading criteria, see “E. Grading Criteria” below.) The following

requirements should be met:
a. Make the canvas 640 by 300 pixels.
b. Draw a starting line where turtles start. (This is already implemented in the

template sketch.)
c. Draw a finish line where turtles finish. (This is already implemented in the

template sketch.)
d. Make an array of turtles to be in the race. (Recommendation: make a single turtle

that completes the race before working with multiple turtles.)
e. Each turtle is automatically created with a different color, so do not bother with

colors.
f. makeTurtle initializes turtles with the pen down, so be sure to put each turtle’s

pen up to avoid drawing trails when the turtles move forward.
g. Your draw() function should draw each turtle by calling the turtle.point()

method. (This new method draws a circle at turtle.x, turtle.y).
h. The race starts when a key is pressed. The turtles sit on the starting line until the

race starts. (This functionality is partially implemented; please see the function
keyPressed in the template code.)

i. While the race is on, each turtle advances by a random amount from 0 to 2,
calculated by calling random(2).

j. The race ends when at least one turtle reaches the finish line. When that
happens, call raceFinish().

15-104 Fall 2016 November 15, 2016

 - 4 -

k. Implement raceFinish(). It should print on the canvas the winning turtle
number, e.g. “Turtle number 0 won the race.” Then (still in raceFinish()) call
noLoop() to stop drawing.

l. Two or more turtles may cross the finish line in the same frame (call to draw()).
You do not have to consider this possibility, but if your program somehow picks
one and only one winner, a small bonus will be awarded.

Hint i. Do not spend time on this unless you finish part B.
Hint ii. To generate a tie, temporarily modify your code so that each turtle

moves exactly 20 on every frame. See if you get the expected result.
Hint iii. You may need an additional variable to remember the winner and a

conditional to prevent reporting multiple winners.
D. Grading Criteria. There will be increasing points for each level of achievement. We

recommend you complete level 1 or 2, submit your result, then work on higher levels in
the time remaining:

1. A single turtle runs the race.
2. 4 racing turtles are stored in an array and run the race
3. 4 racing turtles are used and for loops are used to avoid writing the same

commands 4 times.
4. N racing turtles are allowed, where N is a global variable set to some value. E.g.

by setting N = 6, and making no other changes, the race will have 6 turtles. (At
some point, turtles will run off the canvas or you will have to space them more
closely – do not worry about this detail.)

15-104 Fall 2016 November 15, 2016

 - 5 -

Problem B: Drawing With the Mouse
A. Modify the part-b/sketch.js file to implement a (very) simple drawing program. The

output might look something like this:

When the user clicks, the drawing program takes that location as the upper left corner of
a rectangle. When the user clicks again, the location becomes the lower right corner of a
rectangle. The rectangle is inserted at the end of an array. All of the rectangles in the
array are displayed.

B. (For an overview and grading criteria, see “E. Grading Criteria” below.) The following
requirements should be met (this is also an implementation guide; you can read and
follow it step-by-step):

a. Make the canvas size 400 by 400.
b. Your program should in some way keep track of the number of mouse clicks.
c. Your program should have an array to store rectangle objects, initially empty.
d. Modify draw() to draw the rectangles objects in the array of rectangles.
e. At this point, it would be smart to manually create a rectangle object, put it in the

array, and debug your draw() function. Then comment out your test and
proceed.

f. If the number of mouse clicks becomes odd (hint: remember that (x % 2) is
either 0 or 1), then remember the mouse coordinates in some way.

g. If the number of mouse clicks becomes even, you now have 4 parameters for a
rectangle: the mouse coordinates stored in part (b) above, and the current mouse
X and Y coordinates. You can assume the current mouse location is below and
to the right of the previously stored coordinates. Construct an object that stores
these 4 parameters (they can be stored as x1, y1, x2, y2, or as x, y, w, h, using
any names you desire.

h. Take the object from part (g) above and insert it as the new last element of your
array of rectangles. You already have draw(), so it will draw all the rectangles
you have created.

15-104 Fall 2016 November 15, 2016

 - 6 -

C. EXTRA CREDIT
a. Modify the rectangle object to store a color as well as coordinates.
b. Modify the draw() command to fill the rectangle with its color.
c. When the user types R, G, or B, set the “current color” to red, green, or blue.

When a rectangle is created, set its color to the current color.
d. Modify your code to display a rectangle “under construction,” that is, start

displaying the rectangle on the first click. The rectangle’s lower right corner will
track the mouse X and Y until the second click. Hint: you can create a rectangle
on the first click and update it on every call to draw(), or, you can add additional
draw code for the rectangle under construction and add it to the array only after
the 2nd click. In this case, this special code will only be active when the click
count is odd.

e. Modify your “draw the rectangles” loop to use an expression of the form
the_rectangle.draw(). Define a rectangle draw function and make sure that
each rectangle object has a draw: attribute whose value is your new rectangle
draw function, and make sure the new rectangle draw function uses “this”
notation to refer to the rectangle object being drawn.

D. Grading Criteria: There are multiple levels of achievement, with increasing points, as
follows:

1. Draw a rectangle at coordinates determined by two mouse clicks.
2. Save and draw each rectangle that is created by a pair of clicks.
3. draw() must clear the canvas (with background()) and redraw all the rectangles

each time it is called.
4. EXTRA CREDIT: Rectangle color can be set by typing R, G, or B (for red, green,

or blue) before the click for the upper left corner. (If you type R, G, or B again
before the 2nd click, you can optionally change the color – it’s up to you.)

5. EXTRA CREDIT: All of the above, plus the rectangle is displayed and the lower
right corner tracks the mouse until the 2nd click, which “freezes” the rectangle.

6. EXTRA CREDIT: Modify your objects so that they contain a draw function as an
attribute, in other words, to draw a rectangle in variable rectangle, you can
write rectangle.draw().

