Project-07-Curves – [OLD FALL 2019] 15-104 • Introduction to Computing for Creative Practice https://courses.ideate.cmu.edu/15-104/f2019 Professor Roger B. Dannenberg • Fall 2019 • Introduction to Computing for Creative Practice Sun, 13 Oct 2019 01:02:18 +0000 en-US hourly 1 https://wordpress.org/?v=5.2.20 Mari Kubota- Project 07- Curves https://courses.ideate.cmu.edu/15-104/f2019/2019/10/12/mari-kubota-project-07-curves/ https://courses.ideate.cmu.edu/15-104/f2019/2019/10/12/mari-kubota-project-07-curves/#respond Sun, 13 Oct 2019 01:02:18 +0000 https://courses.ideate.cmu.edu/15-104/f2019/?p=48390 Continue reading "Mari Kubota- Project 07- Curves"]]>

index sketch

<!DOCTYPE html>
<html>
  <head>
    <meta charset="UTF-8">
    <title>p5.js vers 0.7.1, Edit index.html to Change This Title</title>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.7.1/p5.js"></script>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.7.1/addons/p5.dom.js"></script>
    <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.7.1/addons/p5.sound.js"></script>
    <script src="sketch.js" type="text/javascript"></script>
  </head>
  <body>
  </body>
</html>

In this project I created used the Conchoid of de Sluze curve to create continuously changing circle which is controlled by the mouse. The equation of the curve was x=(sec t +acos t) cos t, y=(sec t +acos t) sint in parametric form. The tricky part of the project was that p5js did not understand “sec t” so I had to rewrite it in cosine form.

]]>
https://courses.ideate.cmu.edu/15-104/f2019/2019/10/12/mari-kubota-project-07-curves/feed/ 0
Shariq M. Shah – Project 07 – Curve https://courses.ideate.cmu.edu/15-104/f2019/2019/10/11/shariq-m-shah-project-07-curve/ https://courses.ideate.cmu.edu/15-104/f2019/2019/10/11/shariq-m-shah-project-07-curve/#respond Fri, 11 Oct 2019 23:53:11 +0000 https://courses.ideate.cmu.edu/15-104/f2019/?p=48071 Continue reading "Shariq M. Shah – Project 07 – Curve"]]>

shariqs-a7-project

// Name: Shariq M. Shah
// Andrew ID: shariqs
// Section: C
// Project 07

//defining global variable for number of points

var nPoints = 500;


function setup() {
  createCanvas(400, 400);
}

function draw() {



  //stroke colors will be a function of mouseX location

  var r = map(mouseX, 0, width, 80, 250);
  var g = map(mouseY, 0, height, 80, 250);
  var b = map(mouseX, 0, width, 80, 250);


  //call drawEpitrochoidCurve function

  background(g, b * 2, r * 2);
  push();
  noFill();
  stroke(b, g, r);
  strokeWeight(0.5);
  translate(width/2, height/2);
  drawEpitrochoidCurve();
  rotate(radians(frameRate));
  pop();



  //call drawFermat function
  push();
  noFill();
  stroke(r, g, b);
  strokeWeight(0.5);
  translate(width/2, height/2);
  drawFermat();
  pop();

}


function drawEpitrochoidCurve() {

    // Epicycloid:
    // http://mathworld.wolfram.com/Epicycloid.html

    var x;
    var y;

    var a = map(mouseX, 0, width, 0, width/2);
    var b = a / 2;
    var h = height / 4;
    var ph = mouseX / 10;

    beginShape();
    for (var i = 0; i < nPoints; i++) {

        var t = map(i, 0, nPoints, 0, PI * 2);

       // defining curves as function of i

        x = (a + b) * cos(t) - h * cos(i * (a + b) / b);
        y = (a + b) * sin(t) - h * sin(i * (a + b) / b);



        vertex(x, y);


    }
    endShape(CLOSE);

}

function drawFermat() {

    var x;
    var y;

    var a = map(mouseX, 0, width, 0, width);
    var b = a / 2;
    var h = height / 2;
    var ph = mouseX / 10;


    beginShape();
    for (var i = 0; i < nPoints; i++) {

        //defining angle variable for function

        var angle = map(i, 0, nPoints, 0, TWO_PI);


        x = (a - b) * sin(angle) - b * sin(angle * (a - b));
        y = (a - b) * cos(angle) - b * cos(angle * (a - b));

        vertex(x, y);


    }
    endShape(CLOSE);

}

In this project, I was able to use curve equations to generate highly complex and articulated line patterns that change with the location of the mouse. By using mapped numbers and for loops that iterate upon the functions the line patterns become layered and produce interesting effects as the overall patterns change. From there, I was able to use variables to change the color of the lines as the mouse position changes, and subsequently the background to match the line colors as they adapt. By using variables for many of the inputs, the results become highly varied and complex. 

]]>
https://courses.ideate.cmu.edu/15-104/f2019/2019/10/11/shariq-m-shah-project-07-curve/feed/ 0