Trickster: Deceptive Bomb
This demo features a countdown timer like would be seen wired to a bomb. This timer counts down from 60 with a “beep” with each tick of the clock so you know time is running out. As time goes on, the frequency of this beeping increases. The only way to know how much time is left to deactivate the bomb is to walk up to the timer and get your hands dirty. Here’s where things get weird! When you approach the timer, trick hands fan out in a 360 degree arc so there’s no telling how much time you have left! When you back up, the hands collapse back and the real hand ticks like normal.
Video
Code
Behavior:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | #include <AccelStepper.h> #include <HCSR04.h> #include "Schedule.h" Schedule* sch = new Schedule(); // Ultrasound Sensing Pins: #define P_ECHO 9 #define P_TRIG 10 UltraSonicDistanceSensor sonar(P_TRIG, P_ECHO); #define BUZZ A0 void beep(){ tone(BUZZ, 700, 100); } // BEHAVIOR PARAMETERS: // Time before "bomb" goes off [ms]: #define TIME_TO_DETONATION 20000 // Slowest (and steady state) tick duration: const unsigned int max_tick_time = 1000; // Fastest tick duration: const unsigned int min_tick_time = 100; // Distance of Observer at Which the the Trick Hands are Fully Unfurled: const float trick_dist = 30; // Distance of Observer at Which the the Trick Hands are Fully Hidden and the Clock Behaves Normally: const float norm_dist = 200; // STATE VARIABLES: // Duration of each clock tick during steady state [ms]: unsigned int tick_time; // Clock Time at Which Behavior Begins [ms]: unsigned long start_time; // Seconds Hand: #define STP1 3 #define DIR1 4 // Trick Hand: #define STP2 6 #define DIR2 7 AccelStepper SecondsHand(1, STP1, DIR1); AccelStepper TrickHand(1, STP2, DIR2); // Returns Distance to the Observer in cm. float dist(){ return sonar.measureDistanceCm(); } // #dist // Returns the Current Time Elapsed as a Fraction of the Total Time to Detonation: float timeElapsed(){ return (millis() - start_time) / TIME_TO_DETONATION; } // #timeElapsed // Behavior to be Performed During Each Tick: void tick(){ beep(); SecondsHand.moveTo(360 * timeElapsed()); SecondsHand.setSpeed(200); SecondsHand.runSpeedToPosition(); if (timeElapsed() < 1.0){ sch->IN(tick_time)->do_(tick); } else { tone(BUZZ, 300, 1000); } } // #tick void setup(){ // Setup Hardware: SecondsHand.setMaxSpeed(500); TrickHand.setMaxSpeed(500); // Setup Behaviors: // Start Ticking Faster Once Half Time Has Elapsed sch->WHILE(timeElapsed() > 0.5)->do_([](){ tick_time = max_tick_time - (max_tick_time-min_tick_time) * (timeElapsed() - 0.5)/0.5; }); // Establish Deceptive Behavior of TrickHand: sch->WHILE( true )->do_([](){ int trickState = 360 - 360 * (dist() - trick_dist) / (norm_dist - trick_dist); TrickHand.moveTo( SecondsHand.currentPosition() + constrain(trickState, 0, 360) ); TrickHand.setSpeed(200); TrickHand.runSpeedToPosition(); }); // Start Ticking: sch->NOW->do_(tick); // Begin: tick_time = max_tick_time; start_time = millis(); } // #setup void loop(){ sch->loop(); } // #loop |
Scheduler:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | /* Schedule.h * Intuitive Scheduling Utility that Allows for Complex Time and Condition Based * Behaviors to be Constructed out of Simple, Legible Event-Based Primitives. * (admittedly, this has a bit of a ways to go in terms of memory efficiency - * badly needs a ring buffer. (especially bad now that state persistence has * been added)) * KNOWN BUGS / PROBLEMS: * - Semi-Required memory leak on the %done% state of Actions. Need to have * some way of determining whether / how long other functions will need access to * this information after the Action has been deleted. NOTE: Until this is fixed, * the ability to create unbounded series of SingleTimedEvents with #in_ is * gone. Keep total number of events known and bounded. * Author: Connor W. Colombo, 9/21/2018 * Version: 0.1.4 * License: MIT */ #ifndef SCHEDULE_H #define SCHEDULE_H #include <StandardCplusplus.h> #include <vector> /* Example Usage (only call these once, likely in setup): ** avoid calling variables directly from inside these functions unless they are global variables ** void setup(){ // Basic Call: sch->EVERY(500)->DO(blink()); // Will call #blink every 500ms sch->EVERY_WHILE(750, dist < 10)->DO(togglePeek()); // Will peek / unpeek every 750ms while dist is < 10cm sch->IN(2500)->DO(doThisOnce()); // Will call #doThisOnce one time in 2.5s sch->NOW->DO(sortOfUrgent()); // Will call #sortOfUrgent as soon as possible without blocking other events (useful in comm. interrupts for longer behavior) sch->WHILE(dist < 10)->DO(swing_arms()); // Will call #swing_arms as often as possible as long as dist < 10. sch->WHEN(dist > 10)->DO(someOtherThing()); // Will call #someOtherThing every time dist goes from <=10 to >10. sch->WHEN(touched())->DO(uncoverEyes()); // Will uncover eyes when touched goes from false to true (so, when touched) // Other more efficient notation for simple function calls: sch->EVERY(250)->do_(blink); // if you're just calling a void function with no arguments, it's more effective to just use the lowercase #do_ // Note: sch->EVERY(100)->DO(x++); // x or other variables accessed directly must be a global variables (not local scope) // Or Save Events to be Registered to Later: Event* FREQ_100Hz = schedule->EVERY(10); Event* TOO_CLOSE = schedule->WHEN(dist < 10); // ... somewhere else in code: TOO_CLOSE->DO(tone(BUZZER, 1000, 25)); TOO_CLOSE->SIGNUP(tone(BUZZER, 1000, 25)); // Additionally, events which setup other events (using nested actions) return // a double pointer to a bool which indicates when all sub-events have been // executed at least once. // Note: bool** beepboopd must be global. beepboopd = sch->IN(3100)->DO_LONG( *(sch->IN(1000)->DO( plt("***BEEP***BOOP***"); )); ); sch->WHEN(**beepboopd)->DO( plt("## BOP ##"); ); } */ /* NB: Some functionality must be assigned in macros b/c lambdas with captures can't be converted to function pointers. */ // More Legible Shorthand for "do_" syntax: #define DO(x) do_([](){x;}) /* Shorthand for Calling a Function which Takes a Long Time to Complete after it Returns (has its own event calls) and returns a double pointer of a boolean which indicates when it is done. */ #define DO_LONG(x) \ do_( new NestingAction([](Action* action){ \ delete action->done; \ action->done = x; \ })); // More Legible Shorthand for "do_" syntax: #define SIGNUP(x) signup([](){x;}) // More Legible Shorthand for "while_" syntax: #define WHILE(x) while_([](){return (x);}) // More Legible Shorthand for "when" syntax #define WHEN(x) when([](){return (x);}) // Syntax to Normalize All-Caps Syntax used by Conditionals: #define EVERY(x) every(x) // More Legible Shorthand for "everyWhile" syntax: #define EVERY_WHILE(x,y) everyWhile(x, [](){return (y);}) // Syntax to Normalize All-Caps Syntax used by Conditionals: #define IN(x) in_(x) // Shorthand Syntax for Performing a Task as Soon as Possible: #define NOW in_(0) typedef bool ** ActionState; #define new_ActionState(b) new bool*(new bool(b)); /* * Container for Action which are called in events and their respective metadata. */ class Action{ // Abstract Container for Use in Arrays of Pointers public : bool * done = new bool ( false ); virtual ~Action(){ //delete done; // <- Leave the done state variable behind //done = nullptr; } // dtor virtual void call() = 0; /* Tells Whether this Action and its Required Actions are Complete. Returns the dereferrenced state of member %done% */ bool isDone(){ return *(this->done); } // #isDone }; // class Action /* * Most basic form of an Action which takes a void-void function which has no * dependencies and thus is considered to be done executing once the function * returns (ie. doesn't generate any Events). */ class BasicAction : public Action{ public : // Type of Function to be Called which Consumes the Stored Data: typedef void (*function) (); BasicAction(function f) : oncall{f} {}; void call(){ oncall(); *( this ->done) = true ; } private : // Function to be Executed when this Action is Called: function oncall; }; // class BasicAction /* * Most basic form of an Action which takes a void-Action* function which has * dependencies / triggers other events and is expected to set this Action's * done value to true once all of its sub-functions are complete. */ class NestingAction : public Action{ public : // Type of Function to be Called which Consumes the Stored Data: typedef void (*function) (Action*); NestingAction(function f) : oncall{f} {}; void call(){ oncall( this ); } private : // Function to be Executed when this Action is Called: function oncall; }; // class NestingAction /* * An Action (ie function) to be Performed by being Called when an Event * Triggers and Must Receive some Piece(s) of Stored Data of type T to Execute. * The contained function is considered to have no dependencies and thus be * done executing once the function returns (ie. doesn't generate any Events). */ template < typename T> class DataAction : public Action{ public : // Type of Function to be Called which Consumes the Stored Data: typedef void (*function) (T); // Stored Data to be Given to the Function: T data; DataAction(function f, T d) : data{d}, oncall{f} {}; // Calls this Action by Passing the Stored Data to #oncall and Calling It. void call(){ oncall(data); *( this ->done) = true ; } private : // Function to be Executed when this Action is Called: function oncall; }; // Class: DataAction /* * An Action (ie function) to be Performed by being Called when an Event * Triggers and Must Receive some Piece(s) of Stored Data of type T to Execute. * The contained function has dependencies / triggers other events and is * expected to set this Action's done value to true once all of its s * sub-functions are complete. */ template < typename T> class NestingDataAction : public Action{ public : // Type of Function to be Called which Consumes the Stored Data: typedef void (*function) (T, Action*); // Stored Data to be Given to the Function: T data; NestingDataAction(function f, T d) : data{d}, oncall{f} {}; // Calls this Action by Passing the Stored Data to #oncall and Calling It. void call(){ oncall( this ); } private : // Function to be Executed when this Action is Called: function oncall; }; // Class: NestingDataAction /* * Basic Event Class which Triggers only when Called Directly. */ class Event{ public : // Basic void-void function which can signup for the event: typedef void (*RegisteredFunction) (); const bool runs_once; // Indentifies whether this event only happens once. Event() : runs_once{ false } {}; virtual ~Event(){ /*for( std::vector<Action*>::iterator it = this->registry.begin(); it != this->registry.end(); ++it ){ delete (*it); } this->registry.clear(); // TODO: Need to come up with way to make Action::done itself stick around*/ } // dtor /* * Request this Event to Execute ASAP. * NOTE: Calls happen IN ADDITION to any event-specific timings or conditions. */ void call(){ this ->calledButNotRun = true ; } // #call /* * Executes this Event if it Should Execute either Because it's been Called or * Should Self-Trigger. * Returns Whether the Event was Executed. */ bool tryExecute(){ if ( this ->shouldTrigger() || this ->calledButNotRun){ // Call #shouldTrigger first this ->execute(); this ->calledButNotRun = false ; return 1; } return 0; } // #tryExecute /* Test if this Event Should Self-Trigger*/ virtual bool shouldTrigger(){ return 0; // Basic Events only Trigger when Explicitly Called } // #shouldTrigger /* Add the Given Function to the %registry% as a BasicAction to be Executed Every Time the Event is Triggered. Returns a double pointer of the done variable of the Action created. */ bool ** signup(RegisteredFunction fcn){ Action* a = new BasicAction(fcn); this ->registry.push_back(a); return &(a->done); } // #signup /* Add the Given Action to the %registry% to be Executed Every Time the Event is Triggered. Returns a double pointer of the done variable of the Action. */ bool ** signup(Action* a){ this ->registry.push_back(a); return &(a->done); } // #signup // Alias for Signing Up for the Event bool ** do_(RegisteredFunction fcn){ return signup(fcn); } bool ** do_(Action* a){ return signup(a); } // Calls All Functions Registered to this Event void execute(){ if (! this ->ran || ! this ->runs_once){ // Do this ^ check instead of deleting self b/c pointer might be accessed later if in list. for (std::vector<Action*>::size_type i = 0; i != this ->registry.size(); i++) { this ->registry[i]->call(); } this ->ran = true ; } } // #execute protected : Event( bool ro) : runs_once{ro} {}; std::vector<Action*> registry; bool ran = false ; // Whether this function has been run before (ever). bool calledButNotRun = false ; // Whether this Event has been Called Recently but Not Yet Executed }; // Class: Event /* Event which Triggers Anytime #shouldTrigger is called and its condition is True*/ class ConditionalEvent : public Event{ public : typedef bool (*EventCondition) (); EventCondition condition; // Function that Triggers the Event if it's Ready to be Triggered ConditionalEvent(EventCondition t) : condition{t} {}; // Constructor virtual ~ConditionalEvent(){ delete & condition; } // Destructor /* * Triggers this Event if its %condition% Allows It. * Returns Whether the Event was Triggered. */ virtual bool shouldTrigger(){ if ( this ->condition()){ return 1; } return 0; } // #shouldTrigger }; /* * Event Class which Triggers when its EventCondition is True When #shouldTrigger * is Called and was False the Last time it was Called. */ class TransitionEvent : public ConditionalEvent{ public : TransitionEvent(EventCondition t) : ConditionalEvent(t) {}; // Constructor bool shouldTrigger(){ bool curr_state = this ->condition(); if (curr_state && ! this ->last_state){ this ->last_state = curr_state; return 1; } this ->last_state = curr_state; return 0; } // #shouldTrigger protected : bool last_state = false ; }; /* * Event which Triggers as Close to its Specified Interval after its Previous * Execution as Possible */ class TimedEvent : public Event{ public : unsigned long interval; // Interval between Executions TimedEvent(unsigned long i) : interval{i} { this ->timer = i; this ->last_time = millis(); }; // Constructor ~TimedEvent(){ } // Destructor /* * Triggers this Event if its %condition% Allows It. * Returns Whether the Event was Triggered. */ bool shouldTrigger(){ unsigned long now = millis(); this ->timer -= now - last_time; this ->last_time = now; if ( this ->timer < 0){ this ->timer += this ->interval; // Keeps execution freq. as close to interval as possible return 1; } return 0; } // #shouldTrigger protected : unsigned long last_time; long timer; TimedEvent( bool runs_once_, unsigned long i) : Event(runs_once_), interval{i} { this ->timer = i; this ->last_time = millis(); }; }; /* An Event which Triggers Once After a Set Period of Time */ class SingleTimedEvent : public TimedEvent{ public : SingleTimedEvent(unsigned long i) : TimedEvent( true , i) {}; // Constructor }; /* An Event which Triggers at a Certain Frequency so Long as a Given Condition is True */ class ConditionalTimedEvent : public TimedEvent{ public : typedef bool (*EventCondition) (); EventCondition condition; // Function that Triggers the Event if it's Ready to be Triggered ConditionalTimedEvent(unsigned long i, EventCondition t) : TimedEvent(i), condition(t){}; virtual ~ConditionalTimedEvent(){ delete & condition; } // Destructor /* * Triggers this Event if its %condition% Allows It. * Returns Whether the Event was Triggered. */ bool shouldTrigger(){ unsigned long now = millis(); this ->timer -= now - last_time; this ->last_time = now; bool curr_state = this ->condition(); // Everytime Condition Becomes True, Restart Timer if (curr_state && ! this ->last_state){ timer = this ->interval; } this ->last_state = curr_state; if (curr_state && this ->timer < 0){ this ->timer += this ->interval; // Keeps execution freq. as close to interval as possible return 1; } return 0; } // #shouldTrigger protected : bool last_state = false ; }; class Schedule{ public : std::vector<Event*> events; /* Create an Event to be Triggered as Long as the Given Condition is True */ ConditionalEvent* while_( bool (*condition)() ){ ConditionalEvent* e = new ConditionalEvent(condition); this ->events.push_back(e); return e; } // #while_ /* Create an Event to be Triggered Once for Every Time the Given Condition Changes from false to true: */ TransitionEvent* when( bool (*condition)() ){ TransitionEvent* e = new TransitionEvent(condition); this ->events.push_back(e); return e; } // #when /* Create an Event that will be Triggered Every %interval% Milliseconds */ TimedEvent* every( const unsigned long interval){ TimedEvent* e = new TimedEvent(interval); this ->events.push_back(e); return e; } // #every /* Create an Event that will be Triggered Once in %t% Milliseconds */ SingleTimedEvent* in_( const unsigned long t){ SingleTimedEvent* e = new SingleTimedEvent(t); this ->events.push_back(e); return e; } // #in_ /* * Create an Event that will be Triggered Every %interval% Milliseconds While * a Given Condition is True, starting %interval% Milliseconds AFTER the * Condition Becomes True. */ ConditionalTimedEvent* everyWhile( const unsigned long interval, bool (*condition)()){ ConditionalTimedEvent* e = new ConditionalTimedEvent(interval, condition); this ->events.push_back(e); return e; } // #everyWhile // Function to be Executed on Every Main Loop (as fast as possible) void loop(){ // Iteration has to account for the fact that elements are intentionally // deleted from the vector in the loop and potentially added at any call // of #Event::tryExecute std::vector<Event*>::size_type size = this ->events.size(); std::vector<Event*>::size_type i = 0; while (i < size){ if ( this ->events[i]->tryExecute() && this ->events[i]->runs_once ){ // Delete Event if it's been Executed and Only Runs Once delete this ->events[i]; // Delete the Event this ->events.erase( this ->events.begin() + i); // Remove the addr from the vector size--; // As far as we know, the vector is now smaller } else { ++i; // Increment iterator normally } } } // #loop }; // Class: Schedule #endif // SCHEDULE_H |
CAD:
demo5parts
Leave a Reply
You must be logged in to post a comment.