Source code for rcp.doublependulum

# Standard library modules.
import math, time, threading, queue, logging

# Third-party library modules.
import numpy as np

# set up logger for module
log = logging.getLogger(__file__)

################################################################
[docs]class DoublePendulumController(object): """Prototype for a double-pendulum controller. This class is typically subclassed to customize the control strategy and the subclass passed into the common application framework. :ivar initial_state: four-element numpy array used to initialize the simulator state: [q1, q2, qd1, qd2] :ivar kp: two-element numpy array with default proportional position gains :ivar ki: two-element numpy array with default integral gains :ivar kd: two-element numpy array with default velocity damping gain :ivar identity: zero-based serial number identifying the instance in the case of multiple simulations """ def __init__(self): # delegate object to which debugging and status messages can be printed; it must implement write() self.console = None # delegate object to query for kinematics parameters and solutions self.model = None # zero-based serial number identifying the instance from multiple simulations self.identity = 0 # world object to query for other system information self.world = None # fixed controller parameters self.initial_state = np.array([0.0, 0.0, 0.0, 0.0]) self.d_state = np.array((1.0, 0.5*math.pi, 0.0, 0.0)) self.kp = np.array((16.0, 8.0)) self.ki = np.array((4.0, 2.0)) self.kd = np.array((4.0, 2.0)) return #================================================================
[docs] def connect_console(self, console): """Attach a console object to be used for debugging output. The object needs to implement write().""" self.console = console return
[docs] def set_identity(self, serial_number): """Set the specific identification number for this controller out of multiples.""" self.identity = serial_number
[docs] def set_world(self, world): """Set the 'world' object which can answer global information queries. This is a deliberately abstract interface between sub-classes and the application framework.""" self.world = world
[docs] def write(self, string): """Write a message to the debugging console. If console is not available, writes to the log as an info message.""" if self.console is not None: self.console.write(string) else: log.info(string) return
[docs] def setup(self): """Hook for final one-time object configuration. This is called once prior to the start of the simulation. The default implementation does nothing.""" pass
[docs] def user_parameter_change(self, parameter, value): """Hook for interactive parameter changes (e.g. GUI sliders). The default implementation does nothing. :param parameter: integer index of parameter, starting with zero :param value: dimensionless parameter value, ranges from zero to one inclusive. """ pass
#================================================================
[docs] def apply_configuration(self, config): """Hook for applying parameters saved in a configuration file. The default implementation does nothing. :param config: configparser object (which implements the mapping protocol) """ pass
[docs] def gather_configuration(self, config): """Hook for saving parameters in a configuration file. The default implementation does nothing. :param config: configparser object (which implements the mapping protocol) """ pass
#================================================================
[docs] def compute_control(self, t, dt, state, tau): """Method called from numerical pendulum simulation to calculate the next step of applied torques. This is usually overridden in a subclass, but the default implementation applies a fixed-target PD position control. :param t: time in seconds since simulation began :param state: four element ndarray of joint positions q and joint velocities qd as [q1, q2, qd1, qd2], expressed in radians and radians/sec :param tau: two element ndarray to fill in with joint torques to apply """ # convenience variables to notate the state variables q1 = state[0] # 'shoulder' angle in radians q2 = state[1] # 'elbow' angle in radians qd1 = state[2] # 'shoulder' velocity in radians/second qd2 = state[3] # 'elbow' velocity in radians/second # calculate position and velocity error as difference from reference state qerr = self.d_state - state # apply PD control to reach the pose (no integral term) tau[0] = (self.kp[0] * qerr[0]) + (self.kd[0] * qerr[2]) tau[1] = (self.kp[1] * qerr[1]) + (self.kd[1] * qerr[3]) return
################################################################
[docs]class DoublePendulumSimulator(object): """Numerical dynamic simulation of a frictionless double pendulum. It communicates with a user-supplied control object to compute applied joint torques. :ivar t: simulated time in seconds :ivar state: four-element vector of dynamic state [q1 q2 qd1 qd2] (position and velocity) :ivar origin: two-element vector locating the pendulum base in world coordinates """ def __init__(self): # the object used to calculate joint torques self.control = None # set default dynamics self.set_default_dynamic_parameters() # configure transient state self.reset() return
[docs] def connect_controller(self, controller): """Attach a controller object used to compute joint torques and set the initial state.""" self.control = controller controller.model = self self.reset() return
[docs] def reset(self): """Reset or initialize all simulator state variables.""" self.t = 0.0 self.dt = 0.001 self.origin = np.zeros(2) if self.control is not None: self.state = self.control.initial_state.copy() else: self.state = np.array([0.0, 0.0, 0.0, 0.0]) self.tau = np.array([0.0, 0.0]) self.dydt = np.ndarray((4,)) return
[docs] def set_default_dynamic_parameters(self): """Set the default dynamics coefficients defining the rigid-body model physics.""" self.l1 = 1.0 # proximal link length, link1 self.l2 = 1.0 # distal link length, link2 self.lc1 = 0.5 # distance from proximal joint to link1 COM self.lc2 = 0.5 # distance from distal joint to link2 COM self.m1 = 1.0 # link1 mass self.m2 = 1.0 # link2 mass self.I1 = (self.m1 * self.l1**2) / 12 # link1 moment of inertia self.I2 = (self.m2 * self.l2**2) / 12 # link2 moment of inertia self.gravity = -9.81 return
#================================================================
[docs] def deriv(self): """Calculate the accelerations for a rigid body double-pendulum dynamics model. :returns: system derivative vector as a numpy ndarray """ q1 = self.state[0] q2 = self.state[1] qd1 = self.state[2] qd2 = self.state[3] LC1 = self.lc1 LC2 = self.lc2 L1 = self.l1 M1 = self.m1 M2 = self.m2 d11 = M1*LC1*LC1 + M2*(L1*L1 + LC2*LC2 + 2*L1*LC2*math.cos(q2)) + self.I1 + self.I2 d12 = M2*(LC2*LC2 + L1*LC2*math.cos(q2)) + self.I2 d21 = d12 d22 = M2*LC2*LC2 + self.I2 h1 = -M2*L1*LC2*math.sin(q2)*qd2*qd2 - 2*M2*L1*LC2*math.sin(q2)*qd2*qd1 h2 = M2*L1*LC2*math.sin(q2)*qd1*qd1 phi1 = -M2*LC2*self.gravity*math.sin(q1+q2) - (M1*LC1 + M2*L1) * self.gravity * math.sin(q1) phi2 = -M2*LC2*self.gravity*math.sin(q1+q2) # now solve the equations for qdd: # d11 qdd1 + d12 qdd2 + h1 + phi1 = tau1 # d21 qdd1 + d22 qdd2 + h2 + phi2 = tau2 rhs1 = self.tau[0] - h1 - phi1 rhs2 = self.tau[1] - h2 - phi2 # Apply Cramer's Rule to compute the accelerations using # determinants by solving D qdd = rhs. First compute the # denominator as the determinant of D: denom = (d11 * d22) - (d21 * d12) # the derivative of the position is trivially the current velocity self.dydt[0] = qd1 self.dydt[1] = qd2 # the derivative of the velocity is the acceleration. # the numerator of qdd[n] is the determinant of the matrix in # which the nth column of D is replaced by RHS self.dydt[2] = ((rhs1 * d22 ) - (rhs2 * d12)) / denom self.dydt[3] = (( d11 * rhs2) - (d21 * rhs1)) / denom return self.dydt
#================================================================
[docs] def timer_tick(self, delta_t): """Run the simulation for an interval. :param delta_t: length of interval in simulated time seconds """ while delta_t > 0: # calculate next control outputs self.control.compute_control(self.t, self.dt, self.state, self.tau) # calculate dynamics model qd = self.deriv() # Euler integration self.state = self.state + self.dt * qd delta_t -= self.dt self.t += self.dt
#================================================================
[docs] def forwardKinematics(self, q): """Compute the forward kinematics. Returns the world-coordinate Cartesian position of the elbow and endpoint for a given joint angle vector. :param q: two-element list or ndarray with [q1, q2] joint angles :return: tuple (elbow, end) of two-element ndarrays with [x,y] locations """ elbow = self.origin + np.array((self.l1 * math.sin(q[0]), -self.l1 * math.cos(q[0]))) end = elbow + np.array((self.l2 * math.sin(q[0]+q[1]), -self.l2 * math.cos(q[0]+q[1]))) return elbow, end
#================================================================
[docs] def endpointIK(self, target): """Compute two inverse kinematics solutions for a target end position. The target is a Cartesian position vector (two-element ndarray) in world coordinates, and the result vectors are joint angles as ndarrays [q0, q1]. If the target is out of reach, returns the closest pose. """ # translate the target vector into body coordinates target = target - self.origin # find the position of the point in polar coordinates radiussq = np.dot(target, target) radius = math.sqrt(radiussq) # theta is the angle of target point w.r.t. -Y axis, same origin as arm theta = math.atan2(target[0], -target[1]) # use the law of cosines to compute the elbow angle # R**2 = l1**2 + l2**2 - 2*l1*l2*cos(pi - elbow) # both elbow and -elbow are valid solutions acosarg = (radiussq - self.l1**2 - self.l2**2) / (-2 * self.l1 * self.l2) if acosarg < -1.0: elbow_supplement = math.pi elif acosarg > 1.0: elbow_supplement = 0.0 else: elbow_supplement = math.acos(acosarg) # use the law of sines to find the angle at the bottom vertex of the triangle defined by the links # radius / sin(elbow_supplement) = l2 / sin(alpha) if radius > 0.0: alpha = math.asin(self.l2 * math.sin(elbow_supplement) / radius) else: alpha = 0.0 # compute the two solutions with opposite elbow sign soln1 = np.array((theta - alpha, math.pi - elbow_supplement)) soln2 = np.array((theta + alpha, elbow_supplement - math.pi)) return soln1, soln2
################################################################