Bibliography of Soft Robotics¶
The readings are a centerpiece of the course. We will together be exploring the soft robotics and art literature. Following are some suggested starting points for robotics literature searches. The Guide to Library Resources page addresses more details of the literature search process.
The papers are categorized in the following sections with brief descriptions. The citations in the descriptions link further below to the full bibliographic references. A few papers relate to the Videos of Related Work.
Contents
Surveys and Overviews of Soft Robotics¶
A survey paper on “Continuum Robots” from 1999 [R83]. A historical view of soft robotics before the term had been invented.
A trend survey from the first issue of the Soft Robotics journal [R64] (2013).
A survey of soft robots in 2015 from a biomimetic perspective [R86].
A bibliometric analysis of the field of Soft Robotics from 2018 [R8]. Might be useful as a snapshot of practitioners and general topics, although also a view of the role of citation networks.
Manipulators¶
Robot manipulators incorporating soft components to support grasping and sensing.
“Elephant trunk” manipulator [R20] (1999).
Viscoelastic robot skin incorporating optical sensing [R111].
“OctArm” continuum manipulator [R120] (2006). Similar to an elephant trunk.
Universal soft gripper based on jamming of granular material [R3]. Also known as the “coffee powder gripper”.
Robot hand with pneumatic soft silicone fingers [R24]. (The “RBO Hand”).
Soft robotic grippers for biological sampling on deep reefs [R31] (2016). Bellows-style soft fingers on a rigid palm.
“Active-Braid”, a bioinspired continuum manipulator [R35] (2017). Trunk-like manipulator, more a compliant mechanism than a soft robot.
Soft gripper system based on a ‘gecko-foot’ microfibrillar dry adhesive material combined with pressure-controlled deformable body [R94] (2017). This is part of a body of work based on micro-structuring soft materials to provide high adhesion.
Printed Paper Actuator: A Low-cost Reversible Actuation and Sensing Method for Shape Changing Interfaces [R106] (2018).
Sensors¶
Compliant robot finger tips incorporating optical sensing [R80] (2007).
Soft robot skin incorporating capacitive sensing [R103] (2010).
Soft artificial skin using embedded microchannels and liquid conductors [R78] (2012). See related video: Harvard Microrobotics Lab.
Soft multi-axis force sensor using embedded microfluidic channels [R105] (2013).
Fabric Sensory Sleeves for Soft Robot State Estimation [R116] (2017). Capacitive strain sensors screenprinted onto fabric sleeves, applicable to joint sensing.
Optically sensorized elastomer air chamber for proprioceptive sensing of soft pneumatic actuators [R44] (2020).
Actuators¶
Polymer gel actuators [R73] (2007).
“…setting the pressure of multiple chambers using a single pressure source when they are interconnected via band-pass valves” [R74] (2014).
Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper [R5] (2015). The application is a gripper, but the focus is a high-voltage compliant dielectric actuator.
RBO Hand 2, a compliant underactuated dextrous manipulator [R25] (2016). Anthromorphic design (five fingers), seven actuators, “PneuFlex actuators” combining inelastic fabric, silicone rubber, and plastic parts.
An Overview of Shape Memory Alloy-Coupled Actuators and Robots [R85] (2017).
Review of soft actuators for small-scale robotics [R37] (2017).
Untethered soft robotics [R82] (2018). Survey of actuation and sensing approaches for soft robots, including soft electronics, citing multiple projects.
Electroactive textile actuators for wearable and soft robots [R33] (2018). High-voltage dielectric elastomer actuators.
Soft LEGO [R58] (2018). Modular soft pneumatically-driven LEGO blocks compatible with rigid LEGO blocks. Includes design examples of mixed hard and soft structures.
Morphing origami block [R50] (2020). Modular folding blocks driven by shape-memory alloy wire actuators.
Compliant electromagnetic actuator architecture for soft robotics [R52] (2020).
Soft actuators with embedded ferromagnetic particles programmed by controlled magnetization [R2] (2020).
A Review of Magnetic Elastomers and Their Role in Soft Robotics [R12] (2020)
Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics [R9] (2020).
Dielectric-elastomer based capacitive micro-speakers [R95] (2020).
Materials¶
Self-Healing in Soft Pneumatic Robotics [R99] (2020). Primarily concerned with polymer chemistry, includes actuator descriptions and prototype manipulator.
Design and Fabrication of Soft Robots¶
Algorithmic design of freeform soft locomotion robots [R36] (2012).
PneUI: Pneumatically Actuated Soft Composite Materials for Shape Changing Interfaces [R113] (2013).
Magnetic Assembly of Soft Robots with Hard Components [R55] (2014).
Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers [R72] (2014). Directly printing resistive ink within a rubber substrate. Could also be classified under ‘sensors’, although the focus is on fabrication.
Survey of methods for fabrication of soft fluidic elastomer robots [R66] (2015).
bioPrint: A Liquid Deposition Printing System for Natural Actuators [R114] (2015).
Techniques for hand-sculpting soft machines and actuators using rubber and salt [R6] (2016).
Laser-cutter cutting and welding thermoplastic fabrication of soft pneumatic actuators [R4] (2018).
Metamaterials: soft structures with functional properties created using internal structures [R41] (2018), [R42] (2019)
Dynamic simulation of articulated soft robots [R40] (2020).
DefeXtiles: 3D Printing Quasi-Woven Fabric via Under-Extrusion [R29] (2020).
MorphingCircuit: An Integrated Design, Simulation, and Fabrication Workflow for Self-morphing Electronics [R107] (2020).
Locomotion¶
GoQBot: a caterpillar-inspired soft-bodied rolling robot [R62] (2011).
Multigait soft robot [R89] (2011). Fully soft pneumatically actuated walking and crawling device.
Untethered jumping soft robot [R101] (2014). Uses chemical fuel for explosive propulsion.
Echinoderm-inspired tube feet for robust robot locomotion and adhesion [R10] (2018). Electromagnetic and hydraulic sucker feet.
Small-scale soft-bodied robot with multimodal locomotion [R39] (2018). Millimeter-scale soft robots with external magnetic actuation.
An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators [R43] (2019).
Electrically activated soft rolling robots [R61] (2020).
Biomimetic magnet-embedded worm-like soft robot [R76] (2020). Centimeter-scale soft device with external magnetic actuation.
“Vine Robots”: inflatable robots based on an everting tube. See also the Stanford University, charmlab video page.
Swimming Robots¶
Soft-bodied pneumatic manta swimming robot [R98] (2007).
Soft robotic fish using fluidic elastomer actuators [R67] (2014).
Octobot overview [R56] (2017). Magazine article (Spectrum), so not highly technical, more of a story and overview.
Fast-Moving Soft Electronic Fish [R60] (2017).
Soft biomimetic fish robot made of dielectric elastomer actuators [R90] (2018).
Thrust force characterization of free-swimming soft robotic jellyfish [R30] (2018). See also Florida Atlantic University, BioRobotics Lab video page.
Multi-Functional Soft-Bodied Jellyfish-like Swimming [R81] (2019).
Human-Robot Interaction¶
Inflatable cable-driven robot arm for safe human interaction [R87] (2011) [R88] (2013).
Wearable soft sensing suit for human gait measurement [R69] (2014).
Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing [R17] (2015). A partial glove of soft elastomer for hand movement sensing.
Modular inflatable actuators and sensors for human-safe robot arms [R51] (2018).
Puffy, a friendly inflatable social robot [R102] (2018). Video and abstract. See also Politecnico di Milano video page.
Skin-On interfaces: a bio-driven approach for artificial skin design to cover interactive devices [R100] (2019). E.g., artificial sensor skin for your smart phone.
Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators [R18] (2019)
ElectroDermis: Fully Untethered, Stretchable, and Highly-Customizable Electronic Bandages [R68] (2019). Combines elements of soft electronics and wearables.
Venous Materials: towards interactive fluidic mechanisms [R71] (2020). Could equally well be classified under soft sensors, but application focus is human interaction. Related: Hands-on studio workshop on interactive fluidic mechanisms [R70] (2020). Conference workshop proposal for making soft sensors and displays for human interaction.
Robotics References¶
Cited References¶
- R1
Roland Aigner, Andreas Pointner, Thomas Preindl, Patrick Parzer, and Michael Haller. Embroidered Resistive Pressure Sensors: A Novel Approach for Textile Interfaces. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI '20, 1–13. New York, NY, USA, April 2020. Association for Computing Machinery. doi:10.1145/3313831.3376305.
- R2
Yunus Alapan, Alp C. Karacakol, Seyda N. Guzelhan, Irem Isik, and Metin Sitti. Reprogrammable shape morphing of magnetic soft machines. Science Advances, 6(38):eabc6414, 2020. Publisher: American Association for the Advancement of Science Section: Research Article. doi:10.1126/sciadv.abc6414.
- R3
J.R. Amend, E.M. Brown, N. Rodenberg, H.M. Jaeger, and H. Lipson. A positive pressure universal gripper based on the jamming of granular material. IEEE Transactions on Robotics, 28(2):341–350, 2012. doi:10.1109/TRO.2011.2171093.
- R4
Amir Ali Amiri Moghadam, Seyedhamidreza Alaie, Suborna Deb Nath, Mahdie Aghasizade Shaarbaf, James K. Min, Simon Dunham, and Bobak Mosadegh. Laser cutting as a rapid method for fabricating thin soft pneumatic actuators and robots. Soft Robotics, 5(4):443–451, 2018. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2017.0069.
- R5
O. A. Araromi, I. Gavrilovich, J. Shintake, S. Rosset, M. Richard, V. Gass, and H. R. Shea. Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Transactions on Mechatronics, 20(1):438–446, 2015. doi:10.1109/TMECH.2014.2329367.
- R6
Alfredo Argiolas, Benjamin C. Mac Murray, Ilse Van Meerbeek, John Whitehead, Edoardo Sinibaldi, Barbara Mazzolai, and Robert F. Shepherd. Sculpting soft machines. Soft Robotics, 3(3):101–108, 2016. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2016.0004.
- R7
Rhodri Armour, Keith Paskins, Adrian Bowyer, Julian Vincent, and William Megill. Jumping robots: a biomimetic solution to locomotion across rough terrain. Bioinspiration & Biomimetics, 2(3):S65–S82, June 2007. doi:10.1088/1748-3182/2/3/S01.
- R8
Guanjun Bao, Hui Fang, Lingfeng Chen, Yuehua Wan, Fang Xu, Qinghua Yang, and Libin Zhang. Soft robotics: academic insights and perspectives through bibliometric analysis. Soft Robotics, 5(3):229–241, Jun 2018. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2017.0135.
- R9
Melanie Baumgartner, Florian Hartmann, Michael Drack, David Preninger, Daniela Wirthl, Robert Gerstmayr, Lukas Lehner, Guoyong Mao, Roland Pruckner, Stepan Demchyshyn, Lisa Reiter, Moritz Strobel, Thomas Stockinger, David Schiller, Susanne Kimeswenger, Florian Greibich, Gerda Buchberger, Elke Bradt, Sabine Hild, Siegfried Bauer, and Martin Kaltenbrunner. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nature Materials, 19(10):1102–1109, October 2020. doi:10.1038/s41563-020-0699-3.
- R10
M. A. Bell, I. Pestovski, W. Scott, K. Kumar, M. K. Jawed, D. A. Paley, C. Majidi, J. C. Weaver, and R. J. Wood. Echinoderm-inspired tube feet for robust robot locomotion and adhesion. IEEE Robotics and Automation Letters, 3(3):2222–2228, 2018. doi:10.1109/LRA.2018.2810949.
- R11
Mads Bering Christiansen and Jonas Jørgensen. Augmenting Soft Robotics with Sound. In Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, HRI '20, 133–135. New York, NY, USA, March 2020. Association for Computing Machinery. doi:10.1145/3371382.3378328.
- R12
Nicholas Bira, Pallavi Dhagat, and Joseph R. Davidson. A review of magnetic elastomers and their role in soft robotics. Frontiers in Robotics and AI, 2020. Publisher: Frontiers. doi:10.3389/frobt.2020.588391.
- R13
L. H. Blumenschein, N. S. Usevitch, B. H. Do, E. W. Hawkes, and A. M. Okamura. Helical actuation on a soft inflated robot body. In IEEE International Conference on Soft Robotics (RoboSoft), 245–252. 2018. doi:10.1109/ROBOSOFT.2018.8404927.
- R14
A. Bonarini, F. Garzotto, M. Gelsomini, M. Romero, F. Clasadonte, and A. N. Ç Yilmaz. A huggable, mobile robot for developmental disorder interventions in a multi-modal interaction space. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 823–830. August 2016. doi:10.1109/ROMAN.2016.7745214.
- R15
John Brackenbury. Caterpillar kinematics. Nature, 390(6659):453–453, December 1997. doi:10.1038/37253.
- R16
John-John Cabibihan, Hifza Javed, Marcelo Ang, and Sharifah Mariam Aljunied. Why Robots? A Survey on the Roles and Benefits of Social Robots in the Therapy of Children with Autism. International Journal of Social Robotics, 5(4):593–618, November 2013. doi:10.1007/s12369-013-0202-2.
- R17
J. Chossat, Yiwei Tao, V. Duchaine, and Y. Park. Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing. In IEEE International Conference on Robotics and Automation (ICRA), 2568–2573. 2015. ISSN: 1050-4729. doi:10.1109/ICRA.2015.7139544.
- R18
J.-B. Chossat, D. K. Y. Chen, Y.-L. Park, and P. B. Shull. Soft wearable skin-stretch device for haptic feedback using twisted and coiled polymer actuators. IEEE Transactions on Haptics, 12(4):521–532, 2019. Conference Name: IEEE Transactions on Haptics. doi:10.1109/TOH.2019.2943154.
- R19
M. Cianchetti. The octopus as paradigm for soft robotics. In 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 515–516. October 2013. doi:10.1109/URAI.2013.6677325.
- R20
Radosław Cieślak and Adam Morecki. Elephant trunk type elastic manipulator - a tool for bulk and liquid materials transportation. Robotica, 17(1):11–16, 1999. Publisher: Cambridge University Press. doi:10.1017/S0263574799001009.
- R21
M. M. Coad, L. H. Blumenschein, S. Cutler, J. A. Reyna Zepeda, N. D. Naclerio, H. El-Hussieny, U. Mehmood, J.-H. Ryu, E. W. Hawkes, and A. M. Okamura. Vine robots: design, teleoperation, and deployment for navigation and exploration. IEEE Robotics Automation Magazine, 27(3):120–132, 2020. doi:10.1109/MRA.2019.2947538.
- R22
Simone Colombo, Franca Garzotto, Mirko Gelsomini, Mattia Melli, and Francesco Clasadonte. Dolphin Sam: A Smart Pet for Children with Intellectual Disability. In Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI '16, 352–353. New York, NY, USA, June 2016. Association for Computing Machinery. doi:10.1145/2909132.2926090.
- R23
M. Degiorgi, F. Garzotto, M. Gelsomini, G. Leonardi, S. Penati, N. Ramuzat, J. Silvestri, F. Clasadonte, and Y. Kinoe. Puffy — An inflatable robotic companion for pre-schoolers. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 35–41. August 2017. doi:10.1109/ROMAN.2017.8172277.
- R24
Raphael Deimel and Oliver Brock. A compliant hand based on a novel pneumatic actuator. In Proceedings of IEEE International Conference on Robotics and Automation, 2047–2053. 2013. doi:10.1109/ICRA.2013.6630851.
- R25
Raphael Deimel and Oliver Brock. A novel type of compliant and underactuated robotic hand for dexterous grasping. The International Journal of Robotics Research, 35(1-3):161–185, January 2016. doi:10.1177/0278364915592961.
- R26
Cathy Fang, Yang Zhang, Matthew Dworman, and Chris Harrison. Wireality: Enabling Complex Tangible Geometries in Virtual Reality with Worn Multi-String Haptics. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI '20, 1–10. New York, NY, USA, April 2020. Association for Computing Machinery. doi:10.1145/3313831.3376470.
- R27
G. Fazzini, P. Paolini, R. Paolucci, D. Chiulli, G. Barile, A. Leoni, M. Muttillo, L. Pantoli, and G. Ferri. Print On Air: FDM 3D Printing Without Supports. In 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 IoT), 350–354. June 2019. doi:10.1109/METROI4.2019.8792846.
- R28
Davide Fisicaro, Franca Garzotto, Mirko Gelsomini, and Francesco Pozzi. ELE - A Conversational Social Robot for Persons with Neuro-Developmental Disorders. In David Lamas, Fernando Loizides, Lennart Nacke, Helen Petrie, Marco Winckler, and Panayiotis Zaphiris, editors, Human-Computer Interaction – INTERACT 2019, Lecture Notes in Computer Science, 134–152. Cham, 2019. Springer International Publishing. doi:10.1007/978-3-030-29381-9_9.
- R29
Jack Forman, Mustafa Doga Dogan, Hamilton Forsythe, and Hiroshi Ishii. DefeXtiles: 3d printing quasi-woven fabric via under-extrusion. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology, 1222–1233. ACM, 2020. doi:10.1145/3379337.3415876.
- R30
Jennifer Frame, Nick Lopez, Oscar Curet, and Erik D. Engeberg. Thrust force characterization of free-swimming soft robotic jellyfish. Bioinspiration and Biomimetics, 2018. Publisher: IOP Publishing Ltd. doi:10.1088/1748-3190/aadcb3.
- R31
Kevin C. Galloway, Kaitlyn P. Becker, Brennan Phillips, Jordan Kirby, Stephen Licht, Dan Tchernov, Robert J. Wood, and David F. Gruber. Soft robotic grippers for biological sampling on deep reefs. Soft Robotics, 3(1):23–33, 2016. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2015.0019.
- R32
Qi Ge, Zhe Chen, Jianxiang Cheng, Biao Zhang, Yuan-Fang Zhang, Honggeng Li, Xiangnan He, Chao Yuan, Ji Liu, Shlomo Magdassi, and Shaoxing Qu. 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Science Advances, 7(2):eaba4261, January 2021. doi:10.1126/sciadv.aba4261.
- R33
J. Guo, C. Xiang, T. Helps, M. Taghavi, and J. Rossiter. Electroactive textile actuators for wearable and soft robots. In 2018 IEEE International Conference on Soft Robotics (RoboSoft), 339–343. April 2018. doi:10.1109/ROBOSOFT.2018.8404942.
- R34
F. L. Hammond, Y. Mengüç, and R. J. Wood. Toward a modular soft sensor-embedded glove for human hand motion and tactile pressure measurement. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 4000–4007. September 2014. doi:10.1109/IROS.2014.6943125.
- R35
T. Hassan, M. Cianchetti, B. Mazzolai, C. Laschi, and P. Dario. Active-braid, a bioinspired continuum manipulator. IEEE Robotics and Automation Letters, 2(4):2104–2110, 2017. doi:10.1109/LRA.2017.2720842.
- R36
J. Hiller and H. Lipson. Automatic design and manufacture of soft robots. Robotics, IEEE Transactions on, 28(2):457–466, 2012. doi:10.1109/TRO.2011.2172702.
- R37
Lindsey Hines, Kirstin Petersen, Guo Zhan Lum, and Metin Sitti. Soft Actuators for Small-Scale Robotics. Advanced Materials, 29(13):1603483, 2017. doi:10.1002/adma.201603483.
- R38
Wenqi Hu, Guo Zhan Lum, Massimo Mastrangeli, and Metin Sitti. Small-scale soft-bodied robot with multimodal locomotion. Nature, 554(7690):81–85, February 2018. doi:10.1038/nature25443.
- R39
Wenqi Hu, Guo Zhan Lum, Massimo Mastrangeli, and Metin Sitti. Small-scale soft-bodied robot with multimodal locomotion. Nature, 554(7690):81–85, 2018. Number: 7690 Publisher: Nature Publishing Group. doi:10.1038/nature25443.
- R40
Weicheng Huang, Xiaonan Huang, Carmel Majidi, and M. Khalid Jawed. Dynamic simulation of articulated soft robots. Nature Communications, 11(1):2233, 2020. Number: 1 Publisher: Nature Publishing Group. doi:10.1038/s41467-020-15651-9.
- R41
Alexandra Ion, Robert Kovacs, Oliver S. Schneider, Pedro Lopes, and Patrick Baudisch. Metamaterial Textures. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–12. Montreal QC Canada, April 2018. ACM. doi:10.1145/3173574.3173910.
- R42
Alexandra Ion, David Lindlbauer, Philipp Herholz, Marc Alexa, and Patrick Baudisch. Understanding Metamaterial Mechanisms. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–14. Glasgow Scotland Uk, May 2019. ACM. doi:10.1145/3290605.3300877.
- R43
Xiaobin Ji, Xinchang Liu, Vito Cacucciolo, Matthias Imboden, Yoan Civet, Alae El Haitami, Sophie Cantin, Yves Perriard, and Herbert Shea. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Science Robotics, 2019. Publisher: Science Robotics Section: Research Article. doi:10.1126/scirobotics.aaz6451.
- R44
J. Jung, M. Park, D. Kim, and Y. Park. Optically sensorized elastomer air chamber for proprioceptive sensing of soft pneumatic actuators. IEEE Robotics and Automation Letters, 5(2):2333–2340, 2020. doi:10.1109/LRA.2020.2970984.
- R45
Martin Kaltenbrunner, Tsuyoshi Sekitani, Jonathan Reeder, Tomoyuki Yokota, Kazunori Kuribara, Takeyoshi Tokuhara, Michael Drack, Reinhard Schwödiauer, Ingrid Graz, Simona Bauer-Gogonea, Siegfried Bauer, and Takao Someya. An ultra-lightweight design for imperceptible plastic electronics. Nature, 499(7459):458–463, July 2013. doi:10.1038/nature12314.
- R46
Shuma Kanai, Yosuke Watanabe, MD Nahin Islam Shiblee, Ajit Khosla, Jun Ogawa, Masaru Kawakami, and Hidemitsu Furukawa. (Invited) Skin-Mimic Hydrogel Materials with Water-Perspiration Control for Soft Robots Developed by 3D Printing. ECS Transactions, 98(13):23, September 2020. doi:10.1149/09813.0023ecst.
- R47
Hyun-Wook Kang, Sang Jin Lee, In Kap Ko, Carlos Kengla, James J. Yoo, and Anthony Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 34(3):312–319, March 2016. doi:10.1038/nbt.3413.
- R48
Hsin-Liu Cindy Kao, Abdelkareem Bedri, and Kent Lyons. SkinWire: Fabricating a Self-Contained On-Skin PCB for the Hand. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(3):116:1–116:23, September 2018. doi:10.1145/3264926.
- R49
Elmer D. F. Ker, Amrinder S. Nain, Lee E. Weiss, Ji Wang, Joseph Suhan, Cristina H. Amon, and Phil G. Campbell. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials, 32(32):8097–8107, November 2011. doi:10.1016/j.biomaterials.2011.07.025.
- R50
S.-R. Kim, D.-Y. Lee, S.-J. Ahn, J.-S. Koh, and K.-J. Cho. Morphing Origami Block for Lightweight Reconfigurable System. IEEE Transactions on Robotics, pages 1–12, 2020. doi:10.1109/TRO.2020.3031248.
- R51
T. Kim, S. J. Yoon, and Y. Park. Soft inflatable sensing modules for safe and interactive robots. IEEE Robotics and Automation Letters, 3(4):3216–3223, 2018. doi:10.1109/LRA.2018.2850971.
- R52
N. Kohls, B. Dias, Y. Mensah, B. P. Ruddy, and Y. C. Mazumdar. Compliant electromagnetic actuator architecture for soft robotics. In IEEE International Conference on Robotics and Automation (ICRA), 9042–9049. 2020. ISSN: 2577-087X. doi:10.1109/ICRA40945.2020.9197442.
- R53
Byung Ki Kong, Dae Hun Kim, and Tae Whan Kim. Significant enhancement of out-coupling efficiency for yarn-based organic light-emitting devices with an organic scattering layer. Nano Energy, 70:104503, April 2020. doi:10.1016/j.nanoen.2020.104503.
- R54
R. K. Kramer, C. Majidi, and R. J. Wood. Wearable tactile keypad with stretchable artificial skin. In 2011 IEEE International Conference on Robotics and Automation, 1103–1107. May 2011. doi:10.1109/ICRA.2011.5980082.
- R55
S.W. Kwok, S.A. Morin, B. Mosadegh, Ju-Hee So, R.F. Shepherd, R.V. Martinez, B. Smith, F.C. Simeone, A.A. Stokes, and G.M. Whitesides. Magnetic Assembly of Soft Robots with Hard Components. Advanced Functional Materials, 24(15):2180–7, April 2014. Place: Germany Publisher: Wiley-VCH. doi:10.1002/adfm.201303047.
- R56
C. Laschi. Octobot - a robot octopus points the way to soft robotics. IEEE Spectrum, 54(3):38–43, 2017. doi:10.1109/MSPEC.2017.7864755.
- R57
J. Lee and K. Cho. Development of magnet connection of modular units for soft robotics. In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 65–67. June 2017. doi:10.1109/URAI.2017.7992886.
- R58
J. Lee, J. Eom, W. Choi, and K. Cho. Soft LEGO: Bottom-Up Design Platform for Soft Robotics. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 7513–7520. October 2018. doi:10.1109/IROS.2018.8593546.
- R59
J. Lee, W. Kim, W. Choi, and K. Cho. Soft Robotic Blocks: Introducing SoBL, a Fast-Build Modularized Design Block. IEEE Robotics Automation Magazine, 23(3):30–41, September 2016. doi:10.1109/MRA.2016.2580479.
- R60
Tiefeng Li, Guorui Li, Yiming Liang, Tingyu Cheng, Jing Dai, Xuxu Yang, Bangyuan Liu, Zedong Zeng, Zhilong Huang, Yingwu Luo, Tao Xie, and Wei Yang. Fast-moving soft electronic fish. Science Advances, 3(4):e1602045, April 2017. doi:10.1126/sciadv.1602045.
- R61
Wen-Bo Li, Wen-Ming Zhang, Qiu-Hua Gao, Qiwei Guo, Song Wu, Hong-Xiang Zou, Zhi-Ke Peng, and Guang Meng. Electrically activated soft robots: speed up by rolling. Soft Robotics, 2020. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2020.0012.
- R62
Huai-Ti Lin, Gary G. Leisk, and Barry Trimmer. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration & Biomimetics, 6(2):026007, April 2011. doi:10.1088/1748-3182/6/2/026007.
- R63
X. Lu, W. Xu, and X. Li. A Soft Robotic Tongue—Mechatronic Design and Surface Reconstruction. IEEE/ASME Transactions on Mechatronics, 22(5):2102–2110, October 2017. doi:10.1109/TMECH.2017.2748606.
- R64
Carmel Majidi. Soft robotics: a perspective—current trends and prospects for the future. Soft Robotics, 1(1):5–11, 2013. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2013.0001.
- R65
M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H. Gracias, and M.C. McAlpine. 3D printed bionic ears. Nano Letters, 13(6):2634–2639, 2013. doi:10.1021/nl4007744.
- R66
Andrew D. Marchese, Robert K. Katzschmann, and Daniela Rus. A recipe for soft fluidic elastomer robots. Soft Robotics, 2(1):7–25, 2015. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2014.0022.
- R67
Andrew D. Marchese, Cagdas D. Onal, and Daniela Rus. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics, 1(1):75–87, 2014. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2013.0009.
- R68
Eric Markvicka, Guanyun Wang, Yi-Chin Lee, Gierad Laput, Carmel Majidi, and Lining Yao. ElectroDermis: fully untethered, stretchable, and highly-customizable electronic bandages. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI '19, 1–10. Association for Computing Machinery, 2019. doi:10.1145/3290605.3300862.
- R69
Yiğit Mengüç, Yong-Lae Park, Hao Pei, Daniel Vogt, Patrick M. Aubin, Ethan Winchell, Lowell Fluke, Leia Stirling, Robert J. Wood, and Conor J. Walsh. Wearable soft sensing suit for human gait measurement. The International Journal of Robotics Research, 33(14):1748–1764, 2014. Publisher: SAGE Publications Ltd STM. doi:10.1177/0278364914543793.
- R70
Hila Mor, Ken Nakagaki, Yu Tianyu, Benjamin Harvey Miller, Yichen Jia, and Hiroshi Ishii. Prototyping interactive fluidic mechanisms. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction, 881–884. ACM, 2020. doi:10.1145/3374920.3374967.
- R71
Hila Mor, Tianyu Yu, Ken Nakagaki, Benjamin Harvey Miller, Yichen Jia, and Hiroshi Ishii. Venous materials: towards interactive fluidic mechanisms. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–14. ACM, 2020. doi:10.1145/3313831.3376129.
- R72
Joseph T. Muth, Daniel M. Vogt, Ryan L. Truby, Yiğit Mengüç, David B. Kolesky, Robert J. Wood, and Jennifer A. Lewis. Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 26(36):6307–6312, 2014. doi:10.1002/adma.201400334.
- R73
Y. Nakabo, T. Mukai, and K. Asaka. Biomimetic soft robots using IPMC. In Kwang J. Kim and Satoshi Tadokoro, editors, Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors, pages 165–198. Springer, 2007. doi:10.1007/978-1-84628-372-7_7.
- R74
N. Napp, B. Araki, M. T. Tolley, R. Nagpal, and R. J. Wood. Simple passive valves for addressable pneumatic actuation. In 2014 IEEE International Conference on Robotics and Automation (ICRA), 1440–1445. May 2014. doi:10.1109/ICRA.2014.6907041.
- R75
D. Q. Nguyen and V. A. Ho. Kinematic Evaluation of a Series of Soft Actuators in Designing an Eel-inspired Robot. In 2020 IEEE/SICE International Symposium on System Integration (SII), 1288–1293. January 2020. doi:10.1109/SII46433.2020.9025926.
- R76
Hanqing Niu, Ruoyu Feng, Yuwei Xie, Bowen Jiang, Yongzhi Sheng, Yang Yu, Hexi Baoyin, and Xiangyuan Zeng. MagWorm: a biomimetic magnet embedded worm-like soft robot. Soft Robotics, 2020. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2019.0167.
- R77
Byungkook Oh, Young-Geun Park, Hwaebong Jung, Sangyoon Ji, Woon Hyung Cheong, Jinwoo Cheon, Wooyoung Lee, and Jang-Ung Park. Untethered Soft Robotics with Fully Integrated Wireless Sensing and Actuating Systems for Somatosensory and Respiratory Functions. Soft Robotics, 7(5):564–573, January 2020. doi:10.1089/soro.2019.0066.
- R78
Y. Park, B. Chen, and R. J. Wood. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sensors Journal, 12(8):2711–2718, 2012. doi:10.1109/JSEN.2012.2200790.
- R79
Y. Park, J. Santos, K. G. Galloway, E. C. Goldfield, and R. J. Wood. A soft wearable robotic device for active knee motions using flat pneumatic artificial muscles. In 2014 IEEE International Conference on Robotics and Automation (ICRA), 4805–4810. May 2014. doi:10.1109/ICRA.2014.6907562.
- R80
Yong-Lae Park, Kelvin Chau, Richard J Black, and Mark R Cutkosky. Force sensing robot fingers using embedded fiber bragg grating sensors and shape deposition manufacturing. In Proceedings 2007 IEEE International Conference on Robotics and Automation, 1510–1516. IEEE, 2007. doi:10.1109/ROBOT.2007.363538.
- R81
Ziyu Ren, Wenqi Hu, Xiaoguang Dong, and Metin Sitti. Multi-functional soft-bodied jellyfish-like swimming. Nature Communications, 10(1):2703, July 2019. doi:10.1038/s41467-019-10549-7.
- R82
Steven I. Rich, Robert J. Wood, and Carmel Majidi. Untethered soft robotics. Nature Electronics, 1(2):102–112, 2018. Number: 2 Publisher: Nature Publishing Group. doi:10.1038/s41928-018-0024-1.
- R83
Graham Robinson and J Bruce C Davies. Continuum robots - a state of the art. In ICRA, volume 4, 2849–2854. IEEE, 1999. Pages: 2849-2854 Publication Title: Icra '99: Ieee International Conference on Robotics and Automation, Vols 1-4, Proceedings WOS:000081625700451. doi:10.1109/ROBOT.1999.774029.
- R84
Victoria G. Rocha, Eduardo Saiz, Iuliia S. Tirichenko, and Esther García-Tuñón. Direct ink writing advances in multi-material structures for a sustainable future. Journal of Materials Chemistry A, 8(31):15646–15657, August 2020. doi:10.1039/D0TA04181E.
- R85
Hugo Rodrigue, Wei Wang, Min-Woo Han, Thomas J.Y. Kim, and Sung-Hoon Ahn. An overview of shape memory alloy-coupled actuators and robots. Soft Robotics, 4(1):3–15, 2017. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2016.0008.
- R86
Daniela Rus and Michael T Tolley. Design, fabrication and control of soft robots. Nature, 521(7553):467–475, 2015. doi:10.1038/nature14543.
- R87
S. Sanan, M. H. Ornstein, and C. G. Atkeson. Physical human interaction for an inflatable manipulator. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 7401–7404. 2011. ISSN: 1558-4615. doi:10.1109/IEMBS.2011.6091723.
- R88
Siddharth Sanan. Soft Inflatable Robots for Safe Physical Human Interaction. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, August 2013.
- R89
Robert F. Shepherd, Filip Ilievski, Wonjae Choi, Stephen A. Morin, Adam A. Stokes, Aaron D. Mazzeo, Xin Chen, Michael Wang, and George M. Whitesides. Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America, 108(51):20400–20403, 2011. Place: Washington Publisher: Natl Acad Sciences WOS:000298289400035. doi:10.1073/pnas.1116564108.
- R90
Jun Shintake, Vito Cacucciolo, Herbert Shea, and Dario Floreano. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robotics, 5(4):466–474, 2018. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/soro.2017.0062.
- R91
N. Shrivastava, R. Mudumbai U. Madhow, and S. Suri. Target tracking with binary proximity sensors: fundamental limits, minimal descriptions, and algorithms. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, SenSys '06, 251–264. New York, NY, USA, October 2006. Association for Computing Machinery. doi:10.1145/1182807.1182833.
- R92
Jason D. Smith, Lee E. Weiss, James E. Burgess, Alan I. West, and Phil G. Campbell. Biologically Active Blood Plasma-Based Biomaterials as a New Paradigm for Tissue Repair Therapies. Disruptive Science and Technology, 1(3):127–137, December 2012. doi:10.1089/dst.2012.0024.
- R93
Scott S. Snibbe and Hayes S. Raffle. Social immersive media: pursuing best practices for multi-user interactive camera/projector exhibits. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '09, 1447–1456. New York, NY, USA, April 2009. Association for Computing Machinery. doi:10.1145/1518701.1518920.
- R94
Sukho Song, Dirk-Michael Drotlef, Carmel Majidi, and Metin Sitti. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces. Proceedings of the National Academy of Sciences, 2017. ISBN: 9781620344118 Publisher: National Academy of Sciences Section: PNAS Plus. doi:10.1073/pnas.1620344114.
- R95
Mohammad Soosani, Mohammad Fathalilou, Ghader Rezazadeh, and Mohammad Homaei. DE-based capacitive micro-speakers for generating directional audible sound. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(10):1325–1334, October 2020. doi:10.1177/1464420720934830.
- R96
Rebecca Stewart and Sophie Skach. Initial Investigations into Characterizing DIY E-Textile Stretch Sensors. In Proceedings of the 4th International Conference on Movement Computing, MOCO '17, 1–4. New York, NY, USA, June 2017. Association for Computing Machinery. doi:10.1145/3077981.3078043.
- R97
Ruojia Sun, Ryosuke Onose, Margaret Dunne, Andrea Ling, Amanda Denham, and Hsin-Liu (Cindy) Kao. Weaving a Second Skin: Exploring Opportunities for Crafting On-Skin Interfaces Through Weaving. In Proceedings of the 2020 ACM Designing Interactive Systems Conference, 365–377. New York, NY, USA, July 2020. Association for Computing Machinery.
- R98
Koichi Suzumori, Satoshi Endo, Takefumi Kanda, Naomi Kato, and Hiroyoshi Suzuki. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. Proceedings of IEEE International Conference on Robotics and Automation, pages 4975–4980, April 2007. doi:10.1109/ROBOT.2007.364246.
- R99
S. Terryn, J. Brancart, E. Roels, G. Van Assche, and B. Vanderborght. Room Temperature Self-Healing in Soft Pneumatic Robotics: Autonomous Self-Healing in a Diels-Alder Polymer Network. IEEE Robotics Automation Magazine, 27(4):44–55, December 2020. doi:10.1109/MRA.2020.3024275.
- R100
Marc Teyssier, Gilles Bailly, Catherine Pelachaud, Eric Lecolinet, Andrew Conn, and Anne Roudaut. Skin-on interfaces: a bio-driven approach for artificial skin design to cover interactive devices. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST '19, 307–322. Association for Computing Machinery, 2019. doi:10.1145/3332165.3347943.
- R101
M. T. Tolley, R. F. Shepherd, M. Karpelson, N. W. Bartlett, K. C. Galloway, M. Wehner, R. Nunes, G. M. Whitesides, and R. J. Wood. An untethered jumping soft robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 561–566. 2014. ISSN: 2153-0866. doi:10.1109/IROS.2014.6942615.
- R102
Alessandro Ubaldi, Mirko Gelsomini, Marzia Degiorgi, Giulia Leonardi, Simone Penati, Noëlie Ramuzat, Jacopo Silvestri, and Franca Garzotto. Puffy, a friendly inflatable social robot. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI EA '18, 1. Association for Computing Machinery, 2018. doi:10.1145/3170427.3186595.
- R103
John Ulmen and Mark Cutkosky. A robust, low-cost and low-noise artificial skin for human-friendly robots. In IEEE International conference on robotics and automation, 4836–4841. 2010. doi:10.1109/ROBOT.2010.5509295.
- R104
Renato Vidoni, Tanja Mimmo, and Camilla Pandolfi. Tendril-Based Climbing Plants to Model, Simulate and Create Bio-Inspired Robotic Systems. Journal of Bionic Engineering, 12(2):250–262, April 2015. doi:10.1016/S1672-6529(14)60117-7.
- R105
Daniel M. Vogt, Yong-Lae Park, and Robert J. Wood. Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sensors Journal Sensors Journal, 13(10):4056–4064, 2013. Place: Piscataway Publisher: Ieee-Inst Electrical Electronics Engineers Inc WOS:000324497400010. doi:10.1109/JSEN.2013.2272320.
- R106
Guanyun Wang, Tingyu Cheng, Youngwook Do, Humphrey Yang, Ye Tao, Jianzhe Gu, Byoungkwon An, and Lining Yao. Printed paper actuator: a low-cost reversible actuation and sensing method for shape changing interfaces. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI '18, 1–12. Association for Computing Machinery, 2018. doi:10.1145/3173574.3174143.
- R107
Guanyun Wang, Fang Qin, Haolin Liu, Ye Tao, Yang Zhang, Yongjie Jessica Zhang, and Lining Yao. MorphingCircuit: an integrated design, simulation, and fabrication workflow for self-morphing electronics. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(4):157:1–157:26, 2020. doi:10.1145/3432232.
- R108
Zijun Wang, Qiguang He, and Shengqiang Cai. Artificial Muscles for Underwater Soft Robotic System. In Derek A. Paley and Norman M. Wereley, editors, Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems, pages 71–97. Springer International Publishing, Cham, 2021. doi:10.1007/978-3-030-50476-2_4.
- R109
Martin Weigel, Tong Lu, Gilles Bailly, Antti Oulasvirta, Carmel Majidi, and Jürgen Steimle. iSkin: Flexible, Stretchable and Visually Customizable On-Body Touch Sensors for Mobile Computing. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pages 2991–3000. Association for Computing Machinery, New York, NY, USA, April 2015. doi:10.1145/2702123.2702391.
- R110
Zhexin Xie, August G. Domel, Ning An, Connor Green, Zheyuan Gong, Tianmiao Wang, Elias M. Knubben, James C. Weaver, Katia Bertoldi, and Li Wen. Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping. Soft Robotics, 7(5):639–648, February 2020. doi:10.1089/soro.2019.0082.
- R111
Yoji Yamada, Tetsuya Morizono, Yoji Umetani, and Hitoshi Takahashi. Highly soft viscoelastic robot skin with a contact object-location-sensing capability. IEEE Transactions on Industrial electronics, 52(4):960–968, 2005. doi:10.1109/TIE.2005.851654.
- R112
Qian Yan, Hanhua Dong, Jin Su, Jianhua Han, Bo Song, Qingsong Wei, and Yusheng Shi. A Review of 3D Printing Technology for Medical Applications. Engineering, 4(5):729–742, October 2018. doi:10.1016/j.eng.2018.07.021.
- R113
Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. PneUI: pneumatically actuated soft composite materials for shape changing interfaces. In Proceedings of the 26th annual ACM symposium on User interface software and technology, UIST '13, 13–22. Association for Computing Machinery, 2013. doi:10.1145/2501988.2502037.
- R114
Lining Yao, Jifei Ou, Guanyun Wang, Chin-Yi Cheng, Wen Wang, Helene Steiner, and Hiroshi Ishii. bioPrint: a liquid deposition printing system for natural actuators. 3D Printing and Additive Manufacturing, 2(4):168–179, 2015. Publisher: Mary Ann Liebert, Inc., publishers. doi:10.1089/3dp.2015.0033.
- R115
H. J. Yoo, W. Kim, S.-Y. Lee, J. Choi, Y. J. Kim, D. S. Koo, Y. Nam, and K.-J. Cho. Wearable Lymphedema Massaging Modules: Proof of Concept using Origami-inspired Soft Fabric Pneumatic Actuators. In 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 950–956. June 2019. doi:10.1109/ICORR.2019.8779525.
- R116
M. C. Yuen, H. Tonoyan, E. L. White, M. Telleria, and R. K. Kramer. Fabric sensory sleeves for soft robot state estimation. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 5511–5518. May 2017. doi:10.1109/ICRA.2017.7989649.
- R117
Yang Zhang, Junhan Zhou, Gierad Laput, and Chris Harrison. SkinTrack: Using the Body as an Electrical Waveguide for Continuous Finger Tracking on the Skin. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 1491–1503. New York, NY, USA, May 2016. Association for Computing Machinery. doi:10.1145/2858036.2858082.
- R118
Jingzhou Zhao and Nongyue He. A mini-review of embedded 3D printing: supporting media and strategies. Journal of Materials Chemistry B, 8(46):10474–10486, December 2020. doi:10.1039/D0TB01819H.
- R119
Clement Zheng, HyunJoo Oh, Laura Devendorf, and Ellen Yi-Luen Do. Sensing Kirigami. In Proceedings of the 2019 on Designing Interactive Systems Conference, DIS '19, 921–934. New York, NY, USA, June 2019. Association for Computing Machinery. doi:10.1145/3322276.3323689.
- R120
W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I. D. Walker, B. A. Jones, M. Pritts, D. Dienno, M. Grissom, and C. D. Rahn. Field trials and testing of the OctArm continuum manipulator. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2336–2341. 2006. ISSN: 1050-4729. doi:10.1109/ROBOT.2006.1642051.