We set out to make a twitch behavior emerge from the simulated double pendulum. The idea behind the twitch was to make something life like rather than joints that were spinning completely around.

The movement we found first was a twitch that looked like an arm hitting two invisible drums in rhythm. To make the simulation more interesting and life like we caused the twitch to relax to zero and then start back up again.  We ended up with an “arm” that cycles between relaxing and twitching.

We played with dampening and not with optimization. We focused on generating a new behavior and understanding how we were effecting the simulation through the code. Next steps would be to try optimization.

 

#!/usr/bin/env python3

# Enable basic compatibility features to work with either Python 2 or 3.
from __future__ import print_function, absolute_import, unicode_literals

# Standard library modules.
import math, time, argparse, threading, queue, random

# Third-party library modules.
import numpy as np

# Use the scipy fmin optimizer if available.
# ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html
try:
    import scipy.optimize
    have_optimizer = True
except ImportError:
    print("Unable to load scipy.optimize.")
    have_optimizer = False

# This uses python-osc to communicate with a Max/MSP patch.
#   installation:      pip3 install python-osc
#   source code:       https://github.com/attwad/python-osc
#   pypi description:  https://pypi.org/project/python-osc/
from pythonosc import udp_client
from pythonosc import dispatcher
from pythonosc import osc_server

################################################################
class DoublePendulumController(object):
    """Prototype for a double-pendulum controller.  This is where you should
    customize the underlying control functions, optimization strategy, and
    reward functions.

    :param args: namespace of command-line arguments returned from argparse
    """
    def __init__(self, args):

        # initialize mode and state variables for controller
        self.mode = 'dissipate'
        self.cycle_start = 0.0
        self.torque_cost = 0.0

        # fixed controller parameters
        self.friction_damping = -0.2
        self.hand_up_target = np.array((1.0, 0.5*math.pi, 0.0, 0.0))
        self.kp    = np.array((16.0, 8.0))
        self.ki    = np.array((4.0, 2.0))
        self.kd    = np.array((4.0, 2.0))

        # integrated error
        self.ierr  = np.array((0.0, 0.0, 0.0, 0.0))

        # keep track of the worst case cost to know when to cancel a trial
        self.worst_cost = None

        # Construct default parameter vector for the optimization problem.  This
        # builds a single array with all the default parameter values.  See the
        # set_optimization_params() method to update the mapping from parameter
        # vector back to controller parameters.
        self.default_params = np.hstack((self.kp, self.ki, self.kd))

        # launch a thread to run the optimizer as a co-routine
        self.evaluation_queue = queue.Queue() # next parameter array to evaluate
        self.result_queue     = queue.Queue() # next computed cost value
        self.optimizer_thread = threading.Thread(target=self.optimizer_task)
        self.optimizer_thread.daemon = True
        self.optimizer_thread.start()
        return

    #================================================================

    def message(self, msgaddr, *args):
        """Process messages from the Max/MSP display received via OSC over UDP.

        :param msgaddr: the address string of the OSC message, eg '/control/mode'
        :param args: tuple of OSC message arguments
        """

        print("Controller received message %s: %s" % (msgaddr, args))
        if msgaddr == "/control/kp1":
            self.kp[0] = args[0]
        elif msgaddr == "/control/kd1":
            self.kd[0] = args[0]
        elif msgaddr == "/control/mode":
            self.mode = args[0]

    #================================================================
    def optimizer_task(self):
        """Entry point for starting the optimizer on a background thread.  It communicates with the simulator using a pair of queues."""
        print("Starting optimizer thread.")
        if have_optimizer:
            result = scipy.optimize.fmin(func=self.optimizer_eval, x0=self.default_params)
            print("Optimizer finished:", result)
        else:
            print("Optimizer not available, evaluating default parameters.")
            result = self.optimizer_eval(self.default_params)
        return

    def optimizer_eval(self, params):
        """Optimizer callback function to evaluate a parameter vector.  This pushes the
        vector into a queue and blocks the optimizer thread waiting for a cost result.

        :param params: numpy ndarray for the optimization problem parameters
        :returns: a scalar cost value

        """

        print("Optimizer requesting evaluation of:", params)
        self.evaluation_queue.put(params)

        # wait for result
        cost = self.result_queue.get()
        print("Trial yielded cost:", cost)
        return cost

    def set_optimization_params(self, params):
        """Configure controller gains for a single trial of the optimization problem.
        Called from within the controller state machine when a new parameter
        vector is received for evaluation.

        :param params: numpy ndarray of optimization parameters
        """
        self.kp = params[0:2]
        self.ki = params[2:4]
        self.kd = params[4:6]
        print("Set optimization params: kp is %s, ki is %s, kd is %s" % (self.kp, self.ki, self.kd))
        return

    #================================================================
    def compute_control(self, t, dt, state, tau, count):
        """Method called from simulator to calculate the next step of applied torques.

        :param t: time in seconds since simulation began
        :param state: four element ndarray of joint positions q and joint velocities qd as [q1, q2, qd1, qd2], expressed in radians and radians/sec
        :param tau: two element ndarray to fill in with joint torques to apply
        """
        # convenience variables to notate the state variables
        q1  = state[0]  # 'shoulder' angle in radians
        q2  = state[1]  # 'elbow' angle in radians
        qd1 = state[2]  # 'shoulder' velocity in radians/second
        qd2 = state[3]  # 'elbow' velocity in radians/second

        # select action based on mode
        if self.mode == 'dissipate':
            # add viscous damping to dissipate energy
            tau[0] = self.friction_damping * qd1
            tau[1] = self.friction_damping * qd2

        # elif self.mode == 'pose':
        #     # calculate position and velocity error as difference from reference state
        #     qerr = self.hand_up_target - state
        #
        #     # apply PD control to reach the pose (no integral term)
        #     tau[0] = (self.kp[0] * qerr[0]) + (self.kd[0] * qerr[2])
        #     tau[1] = (self.kp[1] * qerr[1]) + (self.kd[1] * qerr[3])

        # Concept #1: Metronome
        # elif self.mode == 'pose':
        #     if (count % 15 == 0):
        #         qerr = self.hand_up_target - state
        #         tau[0] = 30*((self.kp[0] * qerr[0]) + (self.kd[0] * qerr[2]))
        #         tau[1] = 30*((self.kp[1] * qerr[1]) + (self.kd[1] * qerr[3]))
        #     else:
        #         tau[0] = self.friction_damping * qd1
        #         tau[1] = self.friction_damping * qd2

        elif self.mode == 'twitch':
            if (count % 600 <= 40):
                qerr = self.hand_up_target - state
                tau[0] = 30*((self.kp[0] * qerr[0]) + (self.kd[0] * qerr[2]))
                tau[1] = 30*((self.kp[1] * qerr[1]) + (self.kd[1] * qerr[3]))
            elif (count % 5000 == 0):
                self.mode = 'damping'
            else:
                tau[0] = self.friction_damping * qd1
                tau[1] = self.friction_damping * qd2

        elif self.mode == 'damping':
            tau[0] = 30 * self.friction_damping * qd1
            tau[1] = 30 * self.friction_damping * qd2
            if (count % 5000 == 0):
                self.mode = 'twitch'

        #--------------------------------------------------------------------------------
        # The following states alternate between driving the pendulum to a
        # 'hand-up' pose and relaxing back to the bottom.  The 'hand-up' pose
        # has the first link horizontal, with the second link pointing straight
        # up.  These can be used in an optimization process to find the most
        # efficient transition between the two poses.
        elif self.mode == 'hand-init' or self.mode == 'optimize':
            # wait for the next optimization trial to begin
            tau[0] = 16.0 * self.friction_damping * qd1
            tau[1] = 16.0 * self.friction_damping * qd2
            if not self.evaluation_queue.empty():
                params = self.evaluation_queue.get()
                self.set_optimization_params(params)
                self.torque_cost = 0.0
                self.mode = 'hand-up'

        elif self.mode == 'hand-up':
            # calculate position and velocity error as difference from reference state
            qerr = self.hand_up_target - state

            # apply PID control to reach the pose
            tau[0] = (self.kp[0] * qerr[0]) + (self.kd[0] * qerr[2]) + (self.ki[0] * self.ierr[0])
            tau[1] = (self.kp[1] * qerr[1]) + (self.kd[1] * qerr[3]) + (self.ki[1] * self.ierr[1])

            # integrate the error
            self.ierr = self.ierr + qerr * dt

            # once at the target, relax, and finish the trial
            if max(abs(qerr[0:2])) < 0.01 and max(abs(qerr[2:4])) < 0.1:
                self.mode = 'hand-down'
                self.ierr  = np.array((0.0, 0.0, 0.0, 0.0)) # reset integrator
                self.result_queue.put(self.torque_cost)
                if self.worst_cost is None: self.worst_cost = self.torque_cost
                else: self.worst_cost = max(self.worst_cost, self.torque_cost)

            # if the trial isn't converging, quit it early
            elif self.worst_cost is not None and self.torque_cost > 2*self.worst_cost:
                print("Cancelling trial at cost: ", self.torque_cost)
                self.mode = 'hand-down'
                self.ierr  = np.array((0.0, 0.0, 0.0, 0.0)) # reset integrator
                self.result_queue.put(self.torque_cost)

        elif self.mode == 'hand-down':
            # relax and let the arm fall back down to the bottom
            tau[0] = 16.0 * self.friction_damping * qd1
            tau[1] = 16.0 * self.friction_damping * qd2

            # if completely at rest, restart the process
            if abs(qd1) < 0.01 and abs(q1) < 0.01:
                self.mode = 'hand-init'

        #----------------------------------------
        elif self.mode == 'swingup':
            tau[1] = self.friction_damping * qd2 # assume unpowered elbow

            # if completely at rest, add a slight perturbation to kick-start the process
            if abs(qd1) < 0.01 and abs(q1) < 0.01:
                tau[0] = 1.0

            # unstable positive velocity feedback near bottom
            elif abs(q1) < 0.5:
                tau[0] = 2.0 * qd1

            else: # else coast
                tau[0] = self.friction_damping * qd1
        #----------------------------------------
        else: # free-swinging, no torques
            tau[0] = 0.0
            tau[1] = 0.0

        # accumulate sum of squared torques cost
        self.torque_cost += tau.dot(tau)
        return

################################################################
class DoublePendulumSimulator(object):
    """Dynamic simulation of a frictionless double pendulum.  This object can send
    state updates to an external server for rendering.  It communicates with a
    user-supplied control object to compute applied joint torques.

    :param args: namespace of command-line arguments returned from argparse
    :param cartoon: python-osc UDP client object for sending messages to GUI
    :param control: instance of DoublePendulumControl for computing applied torques
    """

    def __init__(self, args, cartoon, control):
        # save the OSC client object used to update the display
        self.cartoon = cartoon

        # save the object used to calculate joint torques
        self.control = control

        # save selected command line flags
        self.verbose = args.verbose
        self.fast = args.fast

        # set default dynamics
        self.set_default_dynamic_parameters()

        # configure transient state
        self.reset()
        return

    def reset(self):
        """Reset or initialize all simulator state variables."""
        self.t     = 0.0
        self.dt    = 0.001
        self.state = np.array([0.0, 0.0, 0.0, 0.0])
        self.tau   = np.array([0.0, 0.0])
        self.dydt  = np.ndarray((4,))
        self.count = 0
        return

    def set_default_dynamic_parameters(self):
        """Set the default dynamics coefficients defining the rigid-body model physics."""
        self.l1   = 1.0    # proximal link length, link1
        self.l2   = 1.0    # distal link length, link2
        self.lc1  = 0.5    # distance from proximal joint to link1 COM
        self.lc2  = 0.5    # distance from distal joint to link2 COM
        self.m1   = 1.0    # link1 mass
        self.m2   = 1.0    # link2 mass
        self.I1   = (self.m1 * self.l1**2) / 12  # link1 moment of inertia
        self.I2   = (self.m2 * self.l2**2) / 12  # link2 moment of inertia
        self.gravity  = -9.81
        return

    #================================================================
    def deriv(self):
        """Calculate the accelerations for a rigid body double-pendulum dynamics model.
        :returns: system derivative vector as a numpy ndarray
        """
        q1  = self.state[0]
        q2  = self.state[1]
        qd1 = self.state[2]
        qd2 = self.state[3]
        LC1 = self.lc1
        LC2 = self.lc2
        L1 = self.l1
        M1 = self.m1
        M2 = self.m2

        d11 = M1*LC1*LC1  + M2*(L1*L1 + LC2*LC2 + 2*L1*LC2*math.cos(q2)) + self.I1 + self.I2
        d12 = M2*(LC2*LC2 + L1*LC2*math.cos(q2)) + self.I2
        d21 = d12
        d22 = M2*LC2*LC2  + self.I2

        h1 = -M2*L1*LC2*math.sin(q2)*qd2*qd2 - 2*M2*L1*LC2*math.sin(q2)*qd2*qd1
        h2 = M2*L1*LC2*math.sin(q2)*qd1*qd1

        phi1 = -M2*LC2*self.gravity*math.sin(q1+q2)  - (M1*LC1 + M2*L1) * self.gravity * math.sin(q1)
        phi2 = -M2*LC2*self.gravity*math.sin(q1+q2)

        # now solve the equations for qdd:
        #  d11 qdd1 + d12 qdd2 + h1 + phi1 = tau1
        #  d21 qdd1 + d22 qdd2 + h2 + phi2 = tau2

        rhs1 = self.tau[0] - h1 - phi1
        rhs2 = self.tau[1] - h2 - phi2

        # Apply Cramer's Rule to compute the accelerations using
        # determinants by solving D qdd = rhs.  First compute the
        # denominator as the determinant of D:
        denom = (d11 * d22) - (d21 * d12)

        # the derivative of the position is trivially the current velocity
        self.dydt[0] = qd1
        self.dydt[1] = qd2

        # the derivative of the velocity is the acceleration.
        # the numerator of qdd[n] is the determinant of the matrix in
        # which the nth column of D is replaced by RHS
        self.dydt[2] = ((rhs1 * d22 ) - (rhs2 * d12)) / denom
        self.dydt[3] = (( d11 * rhs2) - (d21  * rhs1)) / denom
        return self.dydt

    #================================================================
    def timer_tick(self, delta_t, count):
        """Run the simulation for an interval.

        :param delta_t: length of interval in simulated time seconds
        """
        while delta_t > 0:
            count += 1
            # calculate next control outputs
            self.control.compute_control(self.t, self.dt, self.state, self.tau, count)

            # calculate dynamics model
            qd = self.deriv()

            # Euler integration
            self.state = self.state + self.dt * qd
            delta_t -= self.dt
            self.t += self.dt

    def update_display(self):
        """Send the current state to the GUI using a UDP OSC message."""
        radian_to_degrees = 180.0 / math.pi
        pose = (self.state[0]*radian_to_degrees, self.state[1]*radian_to_degrees)
        self.cartoon.send_message("/q", pose)
        if self.verbose: print("Position: ", pose)
        return

    def event_loop(self):
        """Simulator run loop; never exits."""
        frame_interval = 0.040 if not self.fast else 10.0
        count = 0
        #e = 0 # exponent to cause twitch
        while True:
            count += 40
            # if (count == math.pow(2,e)):
            #     e += 1
            #     count = 0
            self.timer_tick(frame_interval, count)
            self.update_display()
            if not self.fast: time.sleep(frame_interval)

    #================================================================
    # Methods to process messages from the Max/MSP display received via OSC over UDP.
    def message(self, msgaddr, *args):
        """Process messages from the Max/MSP display received via OSC over UDP.

        :param msgaddr: the address string of the OSC message, eg '/sim/verbose'
        :param args: tuple of OSC message arguments
        """

        print("Simulator received message %s: %s" % (msgaddr, args))
        if msgaddr == "/sim/verbose":
            self.verbose = (args[0] != 0)

    def unknown_message(self, msgaddr, *args):
        """Default handler for unrecognized OSC messages."""
        print("Simulator received unmapped message %s: %s" % (msgaddr, args))

################################################################
def start_osc_server(args, sim, control):
    """Start a background thread running an OSC server listening for messages on an UDP socket."""

    # Initialize the OSC message dispatch system.
    dispatch = dispatcher.Dispatcher()
    dispatch.map("/sim/*", sim.message)
    dispatch.map("/control/*", control.message)
    dispatch.set_default_handler(sim.unknown_message)

    # Start and run the server.
    server = osc_server.ThreadingOSCUDPServer((args.simaddr, args.simport), dispatch)
    server_thread = threading.Thread(target=server.serve_forever)
    server_thread.daemon = True
    server_thread.start()

################################################################
# Script entry point.
if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Double-pendulum or two-link arm simulator.")
    parser.add_argument('--verbose', action='store_true', help='Enable debugging output.')
    parser.add_argument('--maxport', type=int, default=16375, help='UDP port for Max/MSP patch (default 16375).')
    parser.add_argument('--maxaddr', default="127.0.0.1", help='IP address for the Max/MSP patch (default localhost).')
    parser.add_argument('--simport', type=int, default=54375, help='UDP port for Python simulator (default 54375).')
    parser.add_argument('--simaddr', default="127.0.0.1", help='IP address for the simulator (default localhost).')
    parser.add_argument('--fast', action='store_true', help='Run as fast as possible.')
    args = parser.parse_args()

    # create an OSC client endpoint to send display updates to Max/MSP
    cartoon = udp_client.SimpleUDPClient(args.maxaddr, args.maxport)

    # initializes the simulator
    control = DoublePendulumController(args)
    sim = DoublePendulumSimulator(args, cartoon, control)

    # set up the OSC message server to receive parameters from Max/MSP
    start_osc_server(args, sim, control)

    # begin the simulation
    sim.event_loop()