Group – Kevin Thies, Bolaji Bankole
Our intent with this project was to use only the shoulder joint to balance the forearm limb.
Outcome-wise, the code does show a response in trying to balance the limb. However, we didn’t account for needing to overshoot the movement to stop the limb from falling one way or another once it starts moving, so it slows own the process of falling, but doesn’t reverse it. This is why when the limb is started in a balanced position, the arm will hold it there, and why we have to jostle the limb from that initial position.
Final full code:
#!/usr/bin/env python3 # Enable basic compatibility features to work with either Python 2 or 3. from __future__ import print_function, absolute_import, unicode_literals # Standard library modules. import math, time, argparse, threading, queue # Third-party library modules. import numpy as np # Use the scipy fmin optimizer if available. # ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin.html try: import scipy.optimize have_optimizer = True except ImportError: print("Unable to load scipy.optimize.") have_optimizer = False # This uses python-osc to communicate with a Max/MSP patch. # installation: pip3 install python-osc # source code: https://github.com/attwad/python-osc # pypi description: https://pypi.org/project/python-osc/ from pythonosc import udp_client from pythonosc import dispatcher from pythonosc import osc_server ################################################################ class DoublePendulumController(object): """Prototype for a double-pendulum controller. This is where you should customize the underlying control functions, optimization strategy, and reward functions. :param args: namespace of command-line arguments returned from argparse """ def __init__(self, args): # initialize mode and state variables for controller self.mode = 'dissipate' self.cycle_start = 0.0 self.torque_cost = 0.0 # fixed controller parameters self.friction_damping = -0.5 self.hand_up_target = np.array((0, math.pi, 0.0, 0.0)) self.kp = np.array((16.0, 8.0)) self.ki = np.array((4.0, 2.0)) self.kd = np.array((4.0, 2.0)) # integrated error self.ierr = np.array((0.0, 0.0, 0.0, 0.0)) self.ierrb = np.array((0.0, 0.0)) # keep track of the worst case cost to know when to cancel a trial self.worst_cost = None # Construct default parameter vector for the optimization problem. This # builds a single array with all the default parameter values. See the # set_optimization_params() method to update the mapping from parameter # vector back to controller parameters. self.default_params = np.hstack((self.kp, self.ki, self.kd)) # launch a thread to run the optimizer as a co-routine self.evaluation_queue = queue.Queue() # next parameter array to evaluate self.result_queue = queue.Queue() # next computed cost value self.optimizer_thread = threading.Thread(target=self.optimizer_task) self.optimizer_thread.daemon = True self.optimizer_thread.start() return #================================================================ def message(self, msgaddr, *args): """Process messages from the Max/MSP display received via OSC over UDP. :param msgaddr: the address string of the OSC message, eg '/control/mode' :param args: tuple of OSC message arguments """ print("Controller received message %s: %s" % (msgaddr, args)) if msgaddr == "/control/kp1": self.kp[0] = args[0] elif msgaddr == "/control/kd1": self.kd[0] = args[0] elif msgaddr == "/control/mode": self.mode = args[0] #================================================================ def optimizer_task(self): """Entry point for starting the optimizer on a background thread. It communicates with the simulator using a pair of queues.""" print("Starting optimizer thread.") if have_optimizer: result = scipy.optimize.fmin(func=self.optimizer_eval, x0=self.default_params) print("Optimizer finished:", result) else: print("Optimizer not available, evaluating default parameters.") result = self.optimizer_eval(self.default_params) return def optimizer_eval(self, params): """Optimizer callback function to evaluate a parameter vector. This pushes the vector into a queue and blocks the optimizer thread waiting for a cost result. :param params: numpy ndarray for the optimization problem parameters :returns: a scalar cost value """ print("Optimizer requesting evaluation of:", params) self.evaluation_queue.put(params) # wait for result cost = self.result_queue.get() print("Trial yielded cost:", cost) return cost def set_optimization_params(self, params): """Configure controller gains for a single trial of the optimization problem. Called from within the controller state machine when a new parameter vector is received for evaluation. :param params: numpy ndarray of optimization parameters """ self.kp = params[0:2] self.ki = params[2:4] self.kd = params[4:6] print("Set optimization params: kp is %s, ki is %s, kd is %s" % (self.kp, self.ki, self.kd)) return #================================================================ def compute_control(self, t, dt, state, tau): """Method called from simulator to calculate the next step of applied torques. :param t: time in seconds since simulation began :param state: four element ndarray of joint positions q and joint velocities qd as [q1, q2, qd1, qd2], expressed in radians and radians/sec :param tau: two element ndarray to fill in with joint torques to apply """ # convenience variables to notate the state variables q1 = state[0] # 'shoulder' angle in radians q2 = state[1] # 'elbow' angle in radians qd1 = state[2] # 'shoulder' velocity in radians/second qd2 = state[3] # 'elbow' velocity in radians/second # select action based on mode if self.mode == 'dissipate': # add viscous damping to dissipate energy tau[0] = self.friction_damping * qd1 tau[1] = self.friction_damping * qd2 elif self.mode == 'pose': # calculate position and velocity error as difference from reference state qerr = self.hand_up_target - state # apply PD control to reach the pose (no integral term) tau[0] = (self.kp[0] * qerr[0]) + (self.kd[0] * qerr[2]) tau[1] = (self.kp[1] * qerr[1]) + (self.kd[1] * qerr[3]) #-------------------------------------------------------------------------------- # The following states alternate between driving the pendulum to a # 'hand-up' pose and relaxing back to the bottom. The 'hand-up' pose # has the first link horizontal, with the second link pointing straight # up. These can be used in an optimization process to find the most # efficient transition between the two poses. elif self.mode == 'hand-init' or self.mode == 'optimize': # wait for the next optimization trial to begin tau[0] = 16.0 * self.friction_damping * qd1 tau[1] = 16.0 * self.friction_damping * qd2 if not self.evaluation_queue.empty(): params = self.evaluation_queue.get() self.set_optimization_params(params) self.torque_cost = 0.0 self.mode = 'hand-up' elif self.mode == 'hand-up': # calculate position and velocity error as difference from reference state qerr = self.hand_up_target - state # apply PID control to reach the pose tau[0] = (self.kp[0] * qerr[0]) + (self.kd[0] * qerr[2]) + (self.ki[0] * self.ierr[0]) tau[1] = (self.kp[1] * qerr[1]) + (self.kd[1] * qerr[3]) + (self.ki[1] * self.ierr[1]) # integrate the error self.ierr = self.ierr + qerr * dt # once at the target, relax, and finish the trial if max(abs(qerr[0:2])) < 0.01 and max(abs(qerr[2:4])) < 0.1: self.mode = 'hand-down' self.ierr = np.array((0.0, 0.0, 0.0, 0.0)) # reset integrator self.result_queue.put(self.torque_cost) if self.worst_cost is None: self.worst_cost = self.torque_cost else: self.worst_cost = max(self.worst_cost, self.torque_cost) # if the trial isn't converging, quit it early elif self.worst_cost is not None and self.torque_cost > 2*self.worst_cost: print("Cancelling trial at cost: ", self.torque_cost) self.mode = 'hand-down' self.ierr = np.array((0.0, 0.0, 0.0, 0.0)) # reset integrator self.result_queue.put(self.torque_cost) elif self.mode == 'hand-down': # relax and let the arm fall back down to the bottom tau[0] = 16.0 * self.friction_damping * qd1 tau[1] = 16.0 * self.friction_damping * qd2 # if completely at rest, restart the process if abs(qd1) < 0.01 and abs(q1) < 0.01: self.mode = 'hand-init' #---------------------------------------- elif self.mode == 'swingup': tau[1] = self.friction_damping * qd2 # assume unpowered elbow # if completely at rest, add a slight perturbation to kick-start the process if abs(qd1) < 0.01 and abs(q1) < 0.01: tau[0] = 1.0 # unstable positive velocity feedback near bottom elif abs(q1) < 0.5: tau[0] = 2.0 * qd1 else: # else coast tau[0] = self.friction_damping * qd1 elif self.mode == 'swingShoulder': tau[1] = .12 #self.friction_damping * qd2 # assume unpowered elbow shoulderAngle = abs(q1%(2*math.pi)) - math.pi # pi is down elbowAngle = abs((q1 + q2)%(2*math.pi)) #print(elbowAngle) #print(shoulderAngle) if abs(q1%(2*math.pi)) < .5 and (abs(elbowAngle%(2*math.pi)) < math.pi * 1.3 and abs(elbowAngle%(2*math.pi)) > math.pi * 0.7): #print("WOOWOW-------------------------") tau[0] = 0 self.mode = "balance" self.angleErrorLast = 0 self.speedErrorLast = 0 self.ierrb = np.array((0.0, 0.0)) elif abs(q1%(2*math.pi)) < .1 and abs(qd1) < 0.01: #print("kick from rest") tau[0] = 1.0 elif abs(q1%(2*math.pi)) < .1 and abs(qd1) < 3.2: if (qd1 < 0.0): #print("kick left") tau[0] = -20.0 else: #print("kick right") tau[0] = 20.0 else: tau[0] = 0 #print("nothing") elif self.mode == "balance": print("BALANCING") elbowAngle = abs((q1 + q2)%(2*math.pi)) self.kpb = [18.0, 16.0] self.kib = [4.0, 2.0] self.kdb = [4.0, 2.0] goalElbowAngle = math.pi goalElbowSpeed = 0.0 self.ierrb = [0.0, 0.0] if abs(q1%(2*math.pi) - math.pi) < .8 and (abs(q2%(2*math.pi)) < math.pi * 1.3 and abs(q2%(2*math.pi)) > math.pi * 0.7): # do jank double PID angleError = (elbowAngle - goalElbowAngle) speedError = -(qd1 - goalElbowSpeed) if self.angleErrorLast == 0: self.angleErrorLast = angleError if self.speedErrorLast == 0: self.speedErrorLast = speedError tau[0] = (self.kpb[0] * angleError + self.kib[0] * self.ierrb[0] + self.kdb[0] * (self.angleErrorLast - angleError)) tau[0] = tau[0] + (self.kpb[1] * speedError + self.kib[1] * self.ierrb[1] + self.kdb[1] * (self.speedErrorLast - speedError)) print(tau[0]) self.ierrb[0] = self.ierrb[0] + angleError * dt self.ierrb[1] = self.ierrb[1] + speedError * dt self.angleErrorLast = angleError self.speedErrorLast = speedError pass else: self.mode = "swingShoulder" print("fell out of balance mode") #tau[0] = 0 #---------------------------------------- else: # free-swinging, no torques tau[0] = 0.0 tau[1] = 0.0 # accumulate sum of squared torques cost self.torque_cost += tau.dot(tau) return ################################################################ class DoublePendulumSimulator(object): """Dynamic simulation of a frictionless double pendulum. This object can send state updates to an external server for rendering. It communicates with a user-supplied control object to compute applied joint torques. :param args: namespace of command-line arguments returned from argparse :param cartoon: python-osc UDP client object for sending messages to GUI :param control: instance of DoublePendulumControl for computing applied torques """ def __init__(self, args, cartoon, control): # save the OSC client object used to update the display self.cartoon = cartoon # save the object used to calculate joint torques self.control = control # save selected command line flags self.verbose = args.verbose self.fast = args.fast # set default dynamics self.set_default_dynamic_parameters() # configure transient state self.reset() return def reset(self): """Reset or initialize all simulator state variables.""" self.t = 0.0 self.dt = 0.001 self.state = np.array([0.0, 0.0, 0.0, 0.0]) self.tau = np.array([0.0, 0.0]) self.dydt = np.ndarray((4,)) return def set_default_dynamic_parameters(self): """Set the default dynamics coefficients defining the rigid-body model physics.""" self.l1 = 1.0 # proximal link length, link1 self.l2 = 1.0 # distal link length, link2 self.lc1 = 0.5 # distance from proximal joint to link1 COM self.lc2 = 0.5 # distance from distal joint to link2 COM self.m1 = 1.0 # link1 mass self.m2 = 1.0 # link2 mass self.I1 = (self.m1 * self.l1**2) / 12 # link1 moment of inertia self.I2 = (self.m2 * self.l2**2) / 12 # link2 moment of inertia self.gravity = -9.81 return #================================================================ def deriv(self): """Calculate the accelerations for a rigid body double-pendulum dynamics model. :returns: system derivative vector as a numpy ndarray """ q1 = self.state[0] q2 = self.state[1] qd1 = self.state[2] qd2 = self.state[3] LC1 = self.lc1 LC2 = self.lc2 L1 = self.l1 M1 = self.m1 M2 = self.m2 d11 = M1*LC1*LC1 + M2*(L1*L1 + LC2*LC2 + 2*L1*LC2*math.cos(q2)) + self.I1 + self.I2 d12 = M2*(LC2*LC2 + L1*LC2*math.cos(q2)) + self.I2 d21 = d12 d22 = M2*LC2*LC2 + self.I2 h1 = -M2*L1*LC2*math.sin(q2)*qd2*qd2 - 2*M2*L1*LC2*math.sin(q2)*qd2*qd1 h2 = M2*L1*LC2*math.sin(q2)*qd1*qd1 phi1 = -M2*LC2*self.gravity*math.sin(q1+q2) - (M1*LC1 + M2*L1) * self.gravity * math.sin(q1) phi2 = -M2*LC2*self.gravity*math.sin(q1+q2) # now solve the equations for qdd: # d11 qdd1 + d12 qdd2 + h1 + phi1 = tau1 # d21 qdd1 + d22 qdd2 + h2 + phi2 = tau2 rhs1 = self.tau[0] - h1 - phi1 rhs2 = self.tau[1] - h2 - phi2 # Apply Cramer's Rule to compute the accelerations using # determinants by solving D qdd = rhs. First compute the # denominator as the determinant of D: denom = (d11 * d22) - (d21 * d12) # the derivative of the position is trivially the current velocity self.dydt[0] = qd1 self.dydt[1] = qd2 # the derivative of the velocity is the acceleration. # the numerator of qdd[n] is the determinant of the matrix in # which the nth column of D is replaced by RHS self.dydt[2] = ((rhs1 * d22 ) - (rhs2 * d12)) / denom self.dydt[3] = (( d11 * rhs2) - (d21 * rhs1)) / denom return self.dydt #================================================================ def timer_tick(self, delta_t): """Run the simulation for an interval. :param delta_t: length of interval in simulated time seconds """ while delta_t > 0: # calculate next control outputs self.control.compute_control(self.t, self.dt, self.state, self.tau) # calculate dynamics model qd = self.deriv() # Euler integration self.state = self.state + self.dt * qd delta_t -= self.dt self.t += self.dt def update_display(self): """Send the current state to the GUI using a UDP OSC message.""" radian_to_degrees = 180.0 / math.pi pose = (self.state[0]*radian_to_degrees, self.state[1]*radian_to_degrees) self.cartoon.send_message("/q", pose) if self.verbose: print("Position: ", pose) return def event_loop(self): """Simulator run loop; never exits.""" frame_interval = 0.040 if not self.fast else 10.0 while True: self.timer_tick(frame_interval) self.update_display() if not self.fast: time.sleep(frame_interval) #================================================================ # Methods to process messages from the Max/MSP display received via OSC over UDP. def message(self, msgaddr, *args): """Process messages from the Max/MSP display received via OSC over UDP. :param msgaddr: the address string of the OSC message, eg '/sim/verbose' :param args: tuple of OSC message arguments """ print("Simulator received message %s: %s" % (msgaddr, args)) if msgaddr == "/sim/verbose": self.verbose = (args[0] != 0) def unknown_message(self, msgaddr, *args): """Default handler for unrecognized OSC messages.""" print("Simulator received unmapped message %s: %s" % (msgaddr, args)) ################################################################ def start_osc_server(args, sim, control): """Start a background thread running an OSC server listening for messages on an UDP socket.""" # Initialize the OSC message dispatch system. dispatch = dispatcher.Dispatcher() dispatch.map("/sim/*", sim.message) dispatch.map("/control/*", control.message) dispatch.set_default_handler(sim.unknown_message) # Start and run the server. server = osc_server.ThreadingOSCUDPServer((args.simaddr, args.simport), dispatch) server_thread = threading.Thread(target=server.serve_forever) server_thread.daemon = True server_thread.start() ################################################################ # Script entry point. if __name__ == '__main__': parser = argparse.ArgumentParser(description="Double-pendulum or two-link arm simulator.") parser.add_argument('--verbose', action='store_true', help='Enable debugging output.') parser.add_argument('--maxport', type=int, default=16375, help='UDP port for Max/MSP patch (default 16375).') parser.add_argument('--maxaddr', default="127.0.0.1", help='IP address for the Max/MSP patch (default localhost).') parser.add_argument('--simport', type=int, default=54375, help='UDP port for Python simulator (default 54375).') parser.add_argument('--simaddr', default="127.0.0.1", help='IP address for the simulator (default localhost).') parser.add_argument('--fast', action='store_true', help='Run as fast as possible.') args = parser.parse_args() # create an OSC client endpoint to send display updates to Max/MSP cartoon = udp_client.SimpleUDPClient(args.maxaddr, args.maxport) # initializes the simulator control = DoublePendulumController(args) sim = DoublePendulumSimulator(args, cartoon, control) # set up the OSC message server to receive parameters from Max/MSP start_osc_server(args, sim, control) # begin the simulation sim.event_loop()
Comments are closed.