Group – Kevin Thies, Bolaji Bankole

Our intent with this project was to use only the shoulder joint to balance the forearm limb.

Outcome-wise, the code does show a response in trying to balance the limb. However, we didn’t account for needing to overshoot the movement to stop the limb from falling one way or another once it starts moving, so it slows own the process of falling, but doesn’t reverse it. This is why when the limb is started in a balanced position, the arm will hold it there, and why we have to jostle the limb from that initial position.

Final full code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
#!/usr/bin/env python3
 
# Enable basic compatibility features to work with either Python 2 or 3.
from __future__ import print_function, absolute_import, unicode_literals
 
# Standard library modules.
import math, time, argparse, threading, queue
 
# Third-party library modules.
import numpy as np
 
# Use the scipy fmin optimizer if available.
try:
import scipy.optimize
have_optimizer = True
except ImportError:
print("Unable to load scipy.optimize.")
have_optimizer = False
 
# This uses python-osc to communicate with a Max/MSP patch.
# installation: pip3 install python-osc
from pythonosc import udp_client
from pythonosc import dispatcher
from pythonosc import osc_server
 
################################################################
class DoublePendulumController(object):
"""Prototype for a double-pendulum controller. This is where you should
customize the underlying control functions, optimization strategy, and
reward functions.
 
:param args: namespace of command-line arguments returned from argparse
"""
def __init__(self, args):
 
# initialize mode and state variables for controller
self.mode = 'dissipate'
self.cycle_start = 0.0
self.torque_cost = 0.0
 
# fixed controller parameters
self.friction_damping = -0.5
self.hand_up_target = np.array((0, math.pi, 0.0, 0.0))
self.kp = np.array((16.0, 8.0))
self.ki = np.array((4.0, 2.0))
self.kd = np.array((4.0, 2.0))
 
# integrated error
self.ierr = np.array((0.0, 0.0, 0.0, 0.0))
 
self.ierrb = np.array((0.0, 0.0))
 
# keep track of the worst case cost to know when to cancel a trial
self.worst_cost = None
 
# Construct default parameter vector for the optimization problem. This
# builds a single array with all the default parameter values. See the
# set_optimization_params() method to update the mapping from parameter
# vector back to controller parameters.
self.default_params = np.hstack((self.kp, self.ki, self.kd))
 
# launch a thread to run the optimizer as a co-routine
self.evaluation_queue = queue.Queue() # next parameter array to evaluate
self.result_queue = queue.Queue() # next computed cost value
self.optimizer_thread = threading.Thread(target=self.optimizer_task)
self.optimizer_thread.daemon = True
self.optimizer_thread.start()
return
 
#================================================================
 
def message(self, msgaddr, *args):
"""Process messages from the Max/MSP display received via OSC over UDP.
 
:param msgaddr: the address string of the OSC message, eg '/control/mode'
:param args: tuple of OSC message arguments
"""
 
print("Controller received message %s: %s" % (msgaddr, args))
if msgaddr == "/control/kp1":
self.kp[0] = args[0]
elif msgaddr == "/control/kd1":
self.kd[0] = args[0]
elif msgaddr == "/control/mode":
self.mode = args[0]
 
#================================================================
def optimizer_task(self):
"""Entry point for starting the optimizer on a background thread. It communicates with the simulator using a pair of queues."""
print("Starting optimizer thread.")
if have_optimizer:
result = scipy.optimize.fmin(func=self.optimizer_eval, x0=self.default_params)
print("Optimizer finished:", result)
else:
print("Optimizer not available, evaluating default parameters.")
result = self.optimizer_eval(self.default_params)
return
 
def optimizer_eval(self, params):
"""Optimizer callback function to evaluate a parameter vector. This pushes the
vector into a queue and blocks the optimizer thread waiting for a cost result.
 
:param params: numpy ndarray for the optimization problem parameters
:returns: a scalar cost value
 
"""
 
print("Optimizer requesting evaluation of:", params)
self.evaluation_queue.put(params)
 
# wait for result
cost = self.result_queue.get()
print("Trial yielded cost:", cost)
return cost
 
def set_optimization_params(self, params):
"""Configure controller gains for a single trial of the optimization problem.
Called from within the controller state machine when a new parameter
vector is received for evaluation.
 
:param params: numpy ndarray of optimization parameters
"""
self.kp = params[0:2]
self.ki = params[2:4]
self.kd = params[4:6]
print("Set optimization params: kp is %s, ki is %s, kd is %s" % (self.kp, self.ki, self.kd))
return
 
#================================================================
def compute_control(self, t, dt, state, tau):
"""Method called from simulator to calculate the next step of applied torques.
 
:param t: time in seconds since simulation began
:param state: four element ndarray of joint positions q and joint velocities qd as [q1, q2, qd1, qd2], expressed in radians and radians/sec
:param tau: two element ndarray to fill in with joint torques to apply
"""
# convenience variables to notate the state variables
q1 = state[0] # 'shoulder' angle in radians
q2 = state[1] # 'elbow' angle in radians
qd1 = state[2] # 'shoulder' velocity in radians/second
qd2 = state[3] # 'elbow' velocity in radians/second
 
# select action based on mode
if self.mode == 'dissipate':
# add viscous damping to dissipate energy
tau[0] = self.friction_damping * qd1
tau[1] = self.friction_damping * qd2
 
elif self.mode == 'pose':
# calculate position and velocity error as difference from reference state
qerr = self.hand_up_target - state
 
# apply PD control to reach the pose (no integral term)
tau[0] = (self.kp[0] * qerr[0]) + (self.kd[0] * qerr[2])
tau[1] = (self.kp[1] * qerr[1]) + (self.kd[1] * qerr[3])
 
#--------------------------------------------------------------------------------
# The following states alternate between driving the pendulum to a
# 'hand-up' pose and relaxing back to the bottom. The 'hand-up' pose
# has the first link horizontal, with the second link pointing straight
# up. These can be used in an optimization process to find the most
# efficient transition between the two poses.
elif self.mode == 'hand-init' or self.mode == 'optimize':
# wait for the next optimization trial to begin
tau[0] = 16.0 * self.friction_damping * qd1
tau[1] = 16.0 * self.friction_damping * qd2
if not self.evaluation_queue.empty():
params = self.evaluation_queue.get()
self.set_optimization_params(params)
self.torque_cost = 0.0
self.mode = 'hand-up'
 
elif self.mode == 'hand-up':
# calculate position and velocity error as difference from reference state
qerr = self.hand_up_target - state
 
# apply PID control to reach the pose
tau[0] = (self.kp[0] * qerr[0]) + (self.kd[0] * qerr[2]) + (self.ki[0] * self.ierr[0])
tau[1] = (self.kp[1] * qerr[1]) + (self.kd[1] * qerr[3]) + (self.ki[1] * self.ierr[1])
 
# integrate the error
self.ierr = self.ierr + qerr * dt
 
# once at the target, relax, and finish the trial
if max(abs(qerr[0:2])) < 0.01 and max(abs(qerr[2:4])) < 0.1:
self.mode = 'hand-down'
self.ierr = np.array((0.0, 0.0, 0.0, 0.0)) # reset integrator
self.result_queue.put(self.torque_cost)
if self.worst_cost is None: self.worst_cost = self.torque_cost
else: self.worst_cost = max(self.worst_cost, self.torque_cost)
 
# if the trial isn't converging, quit it early
elif self.worst_cost is not None and self.torque_cost > 2*self.worst_cost:
print("Cancelling trial at cost: ", self.torque_cost)
self.mode = 'hand-down'
self.ierr = np.array((0.0, 0.0, 0.0, 0.0)) # reset integrator
self.result_queue.put(self.torque_cost)
 
elif self.mode == 'hand-down':
# relax and let the arm fall back down to the bottom
tau[0] = 16.0 * self.friction_damping * qd1
tau[1] = 16.0 * self.friction_damping * qd2
 
# if completely at rest, restart the process
if abs(qd1) < 0.01 and abs(q1) < 0.01:
self.mode = 'hand-init'
 
#----------------------------------------
elif self.mode == 'swingup':
tau[1] = self.friction_damping * qd2 # assume unpowered elbow
 
# if completely at rest, add a slight perturbation to kick-start the process
if abs(qd1) < 0.01 and abs(q1) < 0.01:
tau[0] = 1.0
 
# unstable positive velocity feedback near bottom
elif abs(q1) < 0.5:
tau[0] = 2.0 * qd1
 
else: # else coast
tau[0] = self.friction_damping * qd1
 
elif self.mode == 'swingShoulder':
tau[1] = .12 #self.friction_damping * qd2 # assume unpowered elbow
shoulderAngle = abs(q1%(2*math.pi)) - math.pi # pi is down
 
elbowAngle = abs((q1 + q2)%(2*math.pi))
 
#print(elbowAngle)
 
#print(shoulderAngle)
if abs(q1%(2*math.pi)) < .5 and (abs(elbowAngle%(2*math.pi)) < math.pi * 1.3 and abs(elbowAngle%(2*math.pi)) > math.pi * 0.7):
#print("WOOWOW-------------------------")
tau[0] = 0
self.mode = "balance"
self.angleErrorLast = 0
self.speedErrorLast = 0
self.ierrb = np.array((0.0, 0.0))
elif abs(q1%(2*math.pi)) < .1 and abs(qd1) < 0.01:
#print("kick from rest")
tau[0] = 1.0
elif abs(q1%(2*math.pi)) < .1 and abs(qd1) < 3.2:
if (qd1 < 0.0):
#print("kick left")
tau[0] = -20.0
else:
#print("kick right")
tau[0] = 20.0
else:
tau[0] = 0
#print("nothing")
 
elif self.mode == "balance":
print("BALANCING")
 
elbowAngle = abs((q1 + q2)%(2*math.pi))
 
self.kpb = [18.0, 16.0]
self.kib = [4.0, 2.0]
self.kdb = [4.0, 2.0]
 
goalElbowAngle = math.pi
goalElbowSpeed = 0.0
 
self.ierrb = [0.0, 0.0]
 
if abs(q1%(2*math.pi) - math.pi) < .8 and (abs(q2%(2*math.pi)) < math.pi * 1.3 and abs(q2%(2*math.pi)) > math.pi * 0.7):
# do jank double PID
 
angleError = (elbowAngle - goalElbowAngle)
speedError = -(qd1 - goalElbowSpeed)
 
if self.angleErrorLast == 0:
self.angleErrorLast = angleError
 
if self.speedErrorLast == 0:
self.speedErrorLast = speedError
 
tau[0] = (self.kpb[0] * angleError + self.kib[0] * self.ierrb[0] + self.kdb[0] * (self.angleErrorLast - angleError))
tau[0] = tau[0] + (self.kpb[1] * speedError + self.kib[1] * self.ierrb[1] + self.kdb[1] * (self.speedErrorLast - speedError))
 
print(tau[0])
 
self.ierrb[0] = self.ierrb[0] + angleError * dt
self.ierrb[1] = self.ierrb[1] + speedError * dt
 
self.angleErrorLast = angleError
self.speedErrorLast = speedError
pass
else:
self.mode = "swingShoulder"
print("fell out of balance mode")
#tau[0] = 0
#----------------------------------------
else: # free-swinging, no torques
tau[0] = 0.0
tau[1] = 0.0
 
# accumulate sum of squared torques cost
self.torque_cost += tau.dot(tau)
return
 
################################################################
class DoublePendulumSimulator(object):
"""Dynamic simulation of a frictionless double pendulum. This object can send
state updates to an external server for rendering. It communicates with a
user-supplied control object to compute applied joint torques.
 
:param args: namespace of command-line arguments returned from argparse
:param cartoon: python-osc UDP client object for sending messages to GUI
:param control: instance of DoublePendulumControl for computing applied torques
"""
 
def __init__(self, args, cartoon, control):
# save the OSC client object used to update the display
self.cartoon = cartoon
 
# save the object used to calculate joint torques
self.control = control
 
# save selected command line flags
self.verbose = args.verbose
self.fast = args.fast
 
# set default dynamics
self.set_default_dynamic_parameters()
 
# configure transient state
self.reset()
return
 
def reset(self):
"""Reset or initialize all simulator state variables."""
self.t = 0.0
self.dt = 0.001
self.state = np.array([0.0, 0.0, 0.0, 0.0])
self.tau = np.array([0.0, 0.0])
self.dydt = np.ndarray((4,))
return
 
def set_default_dynamic_parameters(self):
"""Set the default dynamics coefficients defining the rigid-body model physics."""
self.l1 = 1.0 # proximal link length, link1
self.l2 = 1.0 # distal link length, link2
self.lc1 = 0.5 # distance from proximal joint to link1 COM
self.lc2 = 0.5 # distance from distal joint to link2 COM
self.m1 = 1.0 # link1 mass
self.m2 = 1.0 # link2 mass
self.I1 = (self.m1 * self.l1**2) / 12 # link1 moment of inertia
self.I2 = (self.m2 * self.l2**2) / 12 # link2 moment of inertia
self.gravity = -9.81
return
 
#================================================================
def deriv(self):
"""Calculate the accelerations for a rigid body double-pendulum dynamics model.
:returns: system derivative vector as a numpy ndarray
"""
q1 = self.state[0]
q2 = self.state[1]
qd1 = self.state[2]
qd2 = self.state[3]
LC1 = self.lc1
LC2 = self.lc2
L1 = self.l1
M1 = self.m1
M2 = self.m2
 
d11 = M1*LC1*LC1 + M2*(L1*L1 + LC2*LC2 + 2*L1*LC2*math.cos(q2)) + self.I1 + self.I2
d12 = M2*(LC2*LC2 + L1*LC2*math.cos(q2)) + self.I2
d21 = d12
d22 = M2*LC2*LC2 + self.I2
 
h1 = -M2*L1*LC2*math.sin(q2)*qd2*qd2 - 2*M2*L1*LC2*math.sin(q2)*qd2*qd1
h2 = M2*L1*LC2*math.sin(q2)*qd1*qd1
 
phi1 = -M2*LC2*self.gravity*math.sin(q1+q2) - (M1*LC1 + M2*L1) * self.gravity * math.sin(q1)
phi2 = -M2*LC2*self.gravity*math.sin(q1+q2)
 
# now solve the equations for qdd:
# d11 qdd1 + d12 qdd2 + h1 + phi1 = tau1
# d21 qdd1 + d22 qdd2 + h2 + phi2 = tau2
 
rhs1 = self.tau[0] - h1 - phi1
rhs2 = self.tau[1] - h2 - phi2
 
# Apply Cramer's Rule to compute the accelerations using
# determinants by solving D qdd = rhs. First compute the
# denominator as the determinant of D:
denom = (d11 * d22) - (d21 * d12)
 
# the derivative of the position is trivially the current velocity
self.dydt[0] = qd1
self.dydt[1] = qd2
 
# the derivative of the velocity is the acceleration.
# the numerator of qdd[n] is the determinant of the matrix in
# which the nth column of D is replaced by RHS
self.dydt[2] = ((rhs1 * d22 ) - (rhs2 * d12)) / denom
self.dydt[3] = (( d11 * rhs2) - (d21 * rhs1)) / denom
return self.dydt
 
#================================================================
def timer_tick(self, delta_t):
"""Run the simulation for an interval.
 
:param delta_t: length of interval in simulated time seconds
"""
while delta_t > 0:
 
# calculate next control outputs
self.control.compute_control(self.t, self.dt, self.state, self.tau)
 
# calculate dynamics model
qd = self.deriv()
 
# Euler integration
self.state = self.state + self.dt * qd
delta_t -= self.dt
self.t += self.dt
 
def update_display(self):
"""Send the current state to the GUI using a UDP OSC message."""
radian_to_degrees = 180.0 / math.pi
pose = (self.state[0]*radian_to_degrees, self.state[1]*radian_to_degrees)
self.cartoon.send_message("/q", pose)
if self.verbose: print("Position: ", pose)
return
 
def event_loop(self):
"""Simulator run loop; never exits."""
frame_interval = 0.040 if not self.fast else 10.0
while True:
self.timer_tick(frame_interval)
self.update_display()
if not self.fast: time.sleep(frame_interval)
 
#================================================================
# Methods to process messages from the Max/MSP display received via OSC over UDP.
def message(self, msgaddr, *args):
"""Process messages from the Max/MSP display received via OSC over UDP.
 
:param msgaddr: the address string of the OSC message, eg '/sim/verbose'
:param args: tuple of OSC message arguments
"""
 
print("Simulator received message %s: %s" % (msgaddr, args))
if msgaddr == "/sim/verbose":
self.verbose = (args[0] != 0)
 
def unknown_message(self, msgaddr, *args):
"""Default handler for unrecognized OSC messages."""
print("Simulator received unmapped message %s: %s" % (msgaddr, args))
 
################################################################
def start_osc_server(args, sim, control):
"""Start a background thread running an OSC server listening for messages on an UDP socket."""
 
# Initialize the OSC message dispatch system.
dispatch = dispatcher.Dispatcher()
dispatch.map("/sim/*", sim.message)
dispatch.map("/control/*", control.message)
dispatch.set_default_handler(sim.unknown_message)
 
# Start and run the server.
server = osc_server.ThreadingOSCUDPServer((args.simaddr, args.simport), dispatch)
server_thread = threading.Thread(target=server.serve_forever)
server_thread.daemon = True
server_thread.start()
 
################################################################
# Script entry point.
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Double-pendulum or two-link arm simulator.")
parser.add_argument('--verbose', action='store_true', help='Enable debugging output.')
parser.add_argument('--maxport', type=int, default=16375, help='UDP port for Max/MSP patch (default 16375).')
parser.add_argument('--maxaddr', default="127.0.0.1", help='IP address for the Max/MSP patch (default localhost).')
parser.add_argument('--simport', type=int, default=54375, help='UDP port for Python simulator (default 54375).')
parser.add_argument('--simaddr', default="127.0.0.1", help='IP address for the simulator (default localhost).')
parser.add_argument('--fast', action='store_true', help='Run as fast as possible.')
args = parser.parse_args()
 
# create an OSC client endpoint to send display updates to Max/MSP
cartoon = udp_client.SimpleUDPClient(args.maxaddr, args.maxport)
 
# initializes the simulator
control = DoublePendulumController(args)
sim = DoublePendulumSimulator(args, cartoon, control)
 
# set up the OSC message server to receive parameters from Max/MSP
start_osc_server(args, sim, control)
 
# begin the simulation
sim.event_loop()