Bibliography of Soft Robotics (S22)¶
The readings are a centerpiece of the course. We will together be exploring the soft robotics and art literature. Following are some suggested starting points for robotics literature searches. The Guide to Library Resources page addresses more details of the literature search process.
The papers are categorized in the following sections with brief descriptions. The citations in the descriptions link further below to the full bibliographic references. A few papers relate to the Videos of Related Work.
In the first iteration of the course, the bibliography was quite expansive and addressed many areas of soft robotics. It is archived on the previous site iteration as Bibliography of Soft Robotics (S21).
Contents
Surveys and Overviews of Soft Robotics¶
A 2008 survey of biologically inpired soft robots [R74] (2008).
The challenges ahead for bio-inspired ‘soft’ robotics [R57] (2012).
A 2013 survey of biologically inpired soft robots [R30] (2013).
Soft Robots in Space: A Perspective for Soft Robotics [R39] (2013).
A survey of soft robots in 2015 from a biomimetic perspective [R62]. (2015).
Hard questions for soft robotics [R20] (2021).
Manipulators¶
Sensors¶
Modelling and testing of a sensor capable of determining the stiffness of biological tissues [R7] (2007).
Actuators¶
A modular approach to soft robots [R53] (2012). Fluidic elastomer actuators and hydrogen peroxide fuel.
Soft Actuators for Small-Scale Robotics [R22] (2017). Compares a number of different actuation processes in soft materials.
Origami-inspired bi-directional soft pneumatic actuator with integrated variable stiffness mechanism [R8] (2017).
Euglenoid-Inspired Giant Shape Change for Highly Deformable Soft Robots [R9] (2017). Hyperelastic bellows actuator.
Soft LEGO [R37] (2018). Modular soft pneumatically-driven LEGO blocks compatible with rigid LEGO blocks. Includes design examples of mixed hard and soft structures.
SMA-Driven Soft Robotic Neck: Design, Control and Validation [R6] (2020).
A five-way directional soft valve with a case study: a starfish like soft robot [R84] (2020).
Driving Soft Robots with Low-Boiling Point Fluids [R18] (2019).
FlowIO, a wearable pneumatic development platform that reduces the barrier to entry for experimentation with pneumatics [R66] (2021).
OmniFiber: Integrated Fluidic Fiber Actuators [R29] (2021).
Design, Kinematics, and Application of Axially and Radially Expandable Modular Soft Pneumatic Actuators [R76] (2021).
Control, Dynamics, and Modeling¶
Materials¶
Design and Fabrication of Soft Robots¶
Automatic design and manufacture of soft robots [R21] (2012). Algorithmic design of freeform soft locomotion robots.
Robot self-assembly by folding: A printed inchworm robot [R15] (2013).
Survey of methods for fabrication of soft fluidic elastomer robots [R45] (2015).
An integrated design and fabrication strategy for entirely soft, autonomous robots [R77] (2016). Fully soft robots with microfluidic logic and chemical fuel.
Development of magnet connection of modular units for soft robotics [R36] (2017).
A framework for the kinematic modeling of soft material robots combining finite element analysis and piecewise constant curvature kinematics [R61] (2017). Kinematic model for soft robots that fits a deformable curve to a virtual-rigid-link model in order to model fluidic elastomer actuators.
A Design and Fabrication Approach for Pneumatic Soft Robotic Arms Using 3D Printed Origami Skeletons [R83] (2019).
Design and Computational Modeling of a 3D Printed Pneumatic Toolkit for Soft Robotics [R85] (2019). Compliant and rigid parts fabricated using 3D printing.
Bubble casting soft robotics [R27] (2021).
Printed silicone pneumatic actuators for soft robotics [R69] (2021). Rapid Liquid Printing of silicone to fabricate without casting.
Locomotion¶
Untethered jumping soft robot [R73] (2014). Uses chemical fuel for explosive propulsion.
Millimeter-scale soft locomoting robots using external magnetic actuation [R25] (2018).
Millimeter-scale soft swimming robots using external magnetic actuation [R82] (2018).
Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot [R43] (2021). Segmented robot with compliant elastomer backbone.
Swimming Robots¶
Soft-bodied Manta Swimming Robot [R70] (2007).
Soft Robot Arm Inspired by the Octopus [R34] (2012).
Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators [R46] (2014).
Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot [R5] (2015).
Fast-moving soft electronic fish [R38] (2017).
Thrust force characterization of free-swimming soft robotic jellyfish [R17] (2018). See also Florida Atlantic University, BioRobotics Lab video page.
Multi-Functional Soft-Bodied Jellyfish-like Swimming [R60] (2019).
Propulsive performance of an undulating fin soft robot [R71] (2020).
Fully 3D printed multi-material soft bio-inspired frog for underwater synchronous swimming [R68] (2021).
CeFlowBot: A Biomimetic Flow-Driven Microrobot that Navigates under Magneto-Acoustic Fields [R50] (2021). Acoustically resonant bubbles act as microfluidic pumps for jet thrust.
Human-Robot Interaction¶
Wearable soft sensing suit for human gait measurement [R48] (2014).
Puffy, a friendly inflatable social robot [R75] (2018). Video and abstract. See also Politecnico di Milano video page.
Skin-On interfaces: a bio-driven approach for artificial skin design to cover interactive devices [R72] (2019). E.g., artificial sensor skin for your smart phone.
The Helpless Soft Robot – Stimulating Human Collaboration through Robotic Movement [R49] (2019).
A wearable soft robot for the arm that is inspired by the eared seals through origami patterns and kirigami [R40] (2021).
Biomimicry and Biomechanics¶
Dynamic Model of the Octopus Arm. I. Biomechanics of the Octopus Reaching Movement [R81] (2005). Dynamic model that describes the relationship between forces on an octopus arm (muscle, gravity, buoyancy, drag and internal) and its motion.
Magnetic Assembly of Soft Robots with Hard Components [R33] (2014).
Soft robot mimicking a human tongue [R41] (2017). Part pneumatic system design, part biomechanics study.
Biomedical Applications¶
Soft robotic glove for combined assistance and at-home rehabilitation [R58] (2015).
Towards a soft robotic skin for autonomous tissue palpation [R3] (2017).
A Multi-Module Soft Robotic Arm with Soft End Effector for Minimally Invasive Surgery [R4] (2019).
Soft Robotic Gloves with Thin McKibben Muscles for Hand Assist and Rehabilitation [R31] (2020).
A Wearable Soft Fabric Sleeve for Upper Limb Augmentation [R23] (2021).
Tissue Engineering¶
Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications [R13] (2008).
Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment [R28] (2011).
Biologically Active Blood Plasma-Based Biomaterials as a New Paradigm for Tissue Repair Therapies [R67] (2012).
Biomaterials for Tissue Engineering and Regenerative Medicine [R44] (2019).
Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization [R64] (2019).
Textiles¶
Other Robotics¶
Paper which are not strictly soft robotics but which may inform soft robotics work.
Remote palpation technology [R24] (1995).
Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms [R54] (2011).
Robogami: A Fully Integrated Low-Profile Robotic Origami [R16] (2015). Robots made from flat-fabricated folded layers.
Aiming and vaulting: Spider inspired leaping for jumping robots [R14] (2016).
Affective Touch in Human–Robot Interaction: Conveying Emotion to the Nao Robot [R2] (2018).
Intelligent humanoid robots expressing artificial humanlike empathy in nursing situations [R56] (2020).
A Touching Connection: How Observing Robotic Touch Can Affect Human Trust in a Robot [R35] (2021).
Uncategorized Soft Robotics¶
Robotics References¶
Cited References¶
- R1
Amir Ali Amiri Moghadam, Seyedhamidreza Alaie, Suborna Deb Nath, Mahdie Aghasizade Shaarbaf, James K. Min, Simon Dunham, and Bobak Mosadegh. Laser Cutting as a Rapid Method for Fabricating Thin Soft Pneumatic Actuators and Robots. Soft Robotics, 5(4):443–451, June 2018. doi:10.1089/soro.2017.0069.
- R2
Rebecca Andreasson, Beatrice Alenljung, Erik Billing, and Robert Lowe. Affective Touch in Human–Robot Interaction: Conveying Emotion to the Nao Robot. International Journal of Social Robotics, 10(4):473–491, September 2018. doi:10.1007/s12369-017-0446-3.
- R3
Federico Campisano, Selim Ozel, Anand Ramakrishnan, Anany Dwivedi, Nikolaos Gkotsis, Cagdas D. Onal, and Pietro Valdastri. Towards a soft robotic skin for autonomous tissue palpation. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 6150–6155. May 2017. doi:10.1109/ICRA.2017.7989729.
- R4
Minghong Chen, Deshan Wang, Jiakang Zou, Lining Sun, Jin Sun, and Guoqing Jin. A Multi-Module Soft Robotic Arm with Soft End Effector for Minimally Invasive Surgery. In 2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 461–465. November 2019. doi:10.1109/WCMEIM48965.2019.00097.
- R5
M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, and C. Laschi. Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot. Bioinspiration & Biomimetics, 10(3):035003, May 2015. doi:10.1088/1748-3190/10/3/035003.
- R6
Dorin Copaci, Jorge Muñoz, Ignacio González, Concepciñn A. Monje, and Luis Moreno. SMA-Driven Soft Robotic Neck: Design, Control and Validation. IEEE Access, 8:199492–199502, 2020. doi:10.1109/ACCESS.2020.3035510.
- R7
Javad Dargahi, Siamak Najarian, Vahid Mirjalili, and Bin Liu. Modelling and testing of a sensor capable of determining the stiffness of biological tissues. Canadian Journal of Electrical and Computer Engineering, 32(1):45–51, 2007. doi:10.1109/CJECE.2007.364332.
- R8
Ajit R. Deshpande, Zion Tsz Ho Tse, and Hongliang Ren. Origami-inspired bi-directional soft pneumatic actuator with integrated variable stiffness mechanism. In 2017 18th International Conference on Advanced Robotics (ICAR), 417–421. July 2017. doi:10.1109/ICAR.2017.8023642.
- R9
K. M. Digumarti, A. T. Conn, and J. Rossiter. Euglenoid-Inspired Giant Shape Change for Highly Deformable Soft Robots. IEEE Robotics and Automation Letters, 2(4):2302–2307, October 2017. doi:10.1109/LRA.2017.2726113.
- R10
A.M. Dollar and R.D. Howe. A robust compliant grasper via shape deposition manufacturing. IEEE/ASME Transactions on Mechatronics, 11(2):154–161, April 2006. doi:10.1109/TMECH.2006.871090.
- R11
Aaron M. Dollar and Robert D. Howe. The Highly Adaptive SDM Hand: Design and Performance Evaluation. The International Journal of Robotics Research, 29(5):585–597, April 2010. doi:10.1177/0278364909360852.
- R12
Dylan Drotman, Saurabh Jadhav, David Sharp, Christian Chan, and Michael T. Tolley. Electronics-free pneumatic circuits for controlling soft-legged robots. Science Robotics, February 2021. doi:10.1126/scirobotics.aay2627.
- R13
Cevat Erisken, Dilhan M. Kalyon, and Hongjun Wang. Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials, 29(30):4065–4073, October 2008. doi:10.1016/j.biomaterials.2008.06.022.
- R14
Hossein Faraji, Ramsey Tachella, and Ross L. Hatton. Aiming and vaulting: Spider inspired leaping for jumping robots. In 2016 IEEE International Conference on Robotics and Automation (ICRA), 2082–2087. May 2016. doi:10.1109/ICRA.2016.7487357.
- R15
Samuel M. Felton, Michael T. Tolley, Cagdas D. Onal, Daniela Rus, and Robert J. Wood. Robot self-assembly by folding: A printed inchworm robot. In 2013 IEEE International Conference on Robotics and Automation, 277–282. May 2013. doi:10.1109/ICRA.2013.6630588.
- R16
Amir Firouzeh and Jamie Paik. Robogami: A Fully Integrated Low-Profile Robotic Origami. Journal of Mechanisms and Robotics, May 2015. doi:10.1115/1.4029491.
- R17
Jennifer Frame, Nick Lopez, Oscar Curet, and Erik D. Engeberg. Thrust force characterization of free-swimming soft robotic jellyfish. Bioinspiration and Biomimetics, 2018. doi:10.1088/1748-3190/aadcb3.
- R18
Martin Garrad, Gabor Soter, Andrew T. Conn, Helmut Hauser, and Jonathan Rossiter. Driving Soft Robots with Low-Boiling Point Fluids. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 74–79. April 2019. doi:10.1109/ROBOSOFT.2019.8722812.
- R19
Ning Gong, Hu Jin, Shuaishuai Sun, Shixin Mao, Weihua Li, and Shiwu Zhang. A bionic soft tongue driven by shape memory alloy and pneumatics. Bioinspiration & Biomimetics, June 2021. doi:10.1088/1748-3190/ac0b98.
- R20
Elliot W. Hawkes, Carmel Majidi, and Michael T. Tolley. Hard questions for soft robotics. Science Robotics, April 2021. doi:10.1126/scirobotics.abg6049.
- R21
J. Hiller and H. Lipson. Automatic Design and Manufacture of Soft Robots. IEEE Transactions on Robotics, 28(2):457–466, April 2012. doi:10.1109/TRO.2011.2172702.
- R22
Lindsey Hines, Kirstin Petersen, Guo Zhan Lum, and Metin Sitti. Soft Actuators for Small-Scale Robotics. Advanced Materials, 29(13):1603483, 2017. doi:10.1002/adma.201603483.
- R23
Trung Thien Hoang, Luke Sy, Mattia Bussu, Mai Thanh Thai, Harrison Low, Phuoc Thien Phan, James Davies, Chi Cong Nguyen, Nigel H. Lovell, and Thanh Nho Do. A Wearable Soft Fabric Sleeve for Upper Limb Augmentation. Sensors, 21(22):7638, January 2021. doi:10.3390/s21227638.
- R24
R.D. Howe, W.J. Peine, D.A. Kantarinis, and J.S. Son. Remote palpation technology. IEEE Engineering in Medicine and Biology Magazine, 14(3):318–323, May 1995. doi:10.1109/51.391770.
- R25
Wenqi Hu, Guo Zhan Lum, Massimo Mastrangeli, and Metin Sitti. Small-scale soft-bodied robot with multimodal locomotion. Nature, 554(7690):81–85, February 2018. doi:10.1038/nature25443.
- R26
Filip Ilievski, Aaron D. Mazzeo, Robert F. Shepherd, Xin Chen, and George M. Whitesides. Soft Robotics for Chemists. Angewandte Chemie International Edition, 50(8):1890–1895, 2011. doi:10.1002/anie.201006464.
- R27
Trevor J. Jones, Etienne Jambon-Puillet, Joel Marthelot, and P.-T. Brun. Bubble casting soft robotics. Nature, 599(7884):229–233, November 2021. doi:10.1038/s41586-021-04029-6.
- R28
Elmer D. F. Ker, Amrinder S. Nain, Lee E. Weiss, Ji Wang, Joseph Suhan, Cristina H. Amon, and Phil G. Campbell. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials, 32(32):8097–8107, November 2011. doi:10.1016/j.biomaterials.2011.07.025.
- R29
Ozgun Kilic Afsar, Ali Shtarbanov, Hila Mor, Ken Nakagaki, Jack Forman, Karen Modrei, Seung Hee Jeong, Klas Hjort, Kristina Höök, and Hiroshi Ishii. OmniFiber: Integrated Fluidic Fiber Actuators for Weaving Movement based Interactions into the 'Fabric of Everyday Life'. In The 34th Annual ACM Symposium on User Interface Software and Technology, pages 1010–1026. Association for Computing Machinery, New York, NY, USA, October 2021. URL: https://doi.org/10.1145/3472749.3474802 (visited on 2022-01-26).
- R30
Sangbae Kim, Cecilia Laschi, and Barry Trimmer. Soft robotics: a bioinspired evolution in robotics. Trends in Biotechnology, 31(5):287–294, May 2013. doi:10.1016/j.tibtech.2013.03.002.
- R31
Shoichiro Koizumi, Te-Hsin Chang, Hiroyuki Nabae, Gen Endo, Koichi Suzumori, Motoki Mita, Kimio Saitoh, Kazutoshi Hatakeyama, Satoaki Chida, and Yoichi Shimada. Soft Robotic Gloves with Thin McKibben Muscles for Hand Assist and Rehabilitation. In 2020 IEEE/SICE International Symposium on System Integration (SII), 93–98. January 2020. doi:10.1109/SII46433.2020.9025832.
- R32
Shunichi Kurumaya, Hiroyuki Nabae, Gen Endo, and Koichi Suzumori. Active Textile Braided in Three Strands with Thin McKibben Muscle. Soft Robotics, 6(2):250–262, April 2019. doi:10.1089/soro.2018.0076.
- R33
S.W. Kwok, S.A. Morin, B. Mosadegh, Ju-Hee So, R.F. Shepherd, R.V. Martinez, B. Smith, F.C. Simeone, A.A. Stokes, and G.M. Whitesides. Magnetic Assembly of Soft Robots with Hard Components. Advanced Functional Materials, 24(15):2180–7, April 2014. doi:10.1002/adfm.201303047.
- R34
Cecilia Laschi, Matteo Cianchetti, Barbara Mazzolai, Laura Margheri, Maurizio Follador, and Paolo Dario. Soft Robot Arm Inspired by the Octopus. Advanced Robotics, 26(7):709–727, January 2012. doi:10.1163/156855312X626343.
- R35
Theresa Law, Bertram F. Malle, and Matthias Scheutz. A Touching Connection: How Observing Robotic Touch Can Affect Human Trust in a Robot. International Journal of Social Robotics, 13(8):2003–2019, December 2021. doi:10.1007/s12369-020-00729-7.
- R36
J. Lee and K. Cho. Development of magnet connection of modular units for soft robotics. In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 65–67. June 2017. doi:10.1109/URAI.2017.7992886.
- R37
J. Lee, J. Eom, W. Choi, and K. Cho. Soft LEGO: Bottom-Up Design Platform for Soft Robotics. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 7513–7520. October 2018. doi:10.1109/IROS.2018.8593546.
- R38
Tiefeng Li, Guorui Li, Yiming Liang, Tingyu Cheng, Jing Dai, Xuxu Yang, Bangyuan Liu, Zedong Zeng, Zhilong Huang, Yingwu Luo, Tao Xie, and Wei Yang. Fast-moving soft electronic fish. Science Advances, 3(4):e1602045, April 2017. doi:10.1126/sciadv.1602045.
- R39
Huai-Ti Lin, Gary G. Leisk, and Barry A. Trimmer. Soft Robots in Space: A Perspective for Soft Robotics. Acta Futura, pages 69–79, 2013. doi:10.2420/AF06.2013.69.
- R40
Sicong Liu, Yuming Zhu, Zicong Zhang, Zhonggui Fang, Jiyong Tan, Jing Peng, Chaoyang Song, H. Harry Asada, and Zheng Wang. Otariidae-Inspired Soft-Robotic Supernumerary Flippers by Fabric Kirigami and Origami. IEEE/ASME Transactions on Mechatronics, 26(5):2747–2757, October 2021. doi:10.1109/TMECH.2020.3045476.
- R41
X. Lu, W. Xu, and X. Li. A Soft Robotic Tongue—Mechatronic Design and Surface Reconstruction. IEEE/ASME Transactions on Mechatronics, 22(5):2102–2110, October 2017. doi:10.1109/TMECH.2017.2748606.
- R42
Ming Luo, Mahdi Agheli, and Cagdas D. Onal. Theoretical Modeling and Experimental Analysis of a Pressure-Operated Soft Robotic Snake. Soft Robotics, 1(2):136–146, June 2014. doi:10.1089/soro.2013.0011.
- R43
Nima Mahkam and Onur Özcan. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot. Bioinspiration & Biomimetics, 16(6):066009, September 2021. doi:10.1088/1748-3190/ac245e.
- R44
Ohan S. Manoukian, Naseem Sardashti, Teagen Stedman, Katie Gailiunas, Anurag Ojha, Aura Penalosa, Christopher Mancuso, Michelle Hobert, and Sangamesh G. Kumbar. Biomaterials for Tissue Engineering and Regenerative Medicine. In Roger Narayan, editor, Encyclopedia of Biomedical Engineering, pages 462–482. Elsevier, Oxford, January 2019. doi:10.1016/B978-0-12-801238-3.64098-9.
- R45
Andrew D. Marchese, Robert K. Katzschmann, and Daniela Rus. A Recipe for Soft Fluidic Elastomer Robots. Soft Robotics, 2(1):7–25, March 2015. doi:10.1089/soro.2014.0022.
- R46
Andrew D. Marchese, Cagdas D. Onal, and Daniela Rus. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. Soft Robotics, 1(1):75–87, February 2014. doi:10.1089/soro.2013.0009.
- R47
Ramses V. Martinez, Carina R. Fish, Xin Chen, and George M. Whitesides. Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators. Advanced Functional Materials, 22(7):1376–1384, 2012. doi:10.1002/adfm.201102978.
- R48
Yiğit Mengüç, Yong-Lae Park, Hao Pei, Daniel Vogt, Patrick M. Aubin, Ethan Winchell, Lowell Fluke, Leia Stirling, Robert J. Wood, and Conor J. Walsh. Wearable soft sensing suit for human gait measurement. The International Journal of Robotics Research, 33(14):1748–1764, December 2014. doi:10.1177/0278364914543793.
- R49
Anna Dagmar Bille Milthers, Anne Bjerre Hammer, Jonathan Jung Johansen, Lasse Goul Jensen, Elizabeth Ann Jochum, and Markus Löchtefeld. The Helpless Soft Robot - Stimulating Human Collaboration through Robotic Movement. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, CHI EA '19, 1–6. New York, NY, USA, May 2019. Association for Computing Machinery. doi:10.1145/3290607.3312807.
- R50
Sumit Mohanty, Aniruddha Paul, Pedro M. Matos, Jiena Zhang, Jakub Sikorski, and Sarthak Misra. CeFlowBot: A Biomimetic Flow-Driven Microrobot that Navigates under Magneto-Acoustic Fields. Small, n/a(n/a):2105829, 2021. doi:10.1002/smll.202105829.
- R51
Hila Mor, Tianyu Yu, Ken Nakagaki, Benjamin Harvey Miller, Yichen Jia, and Hiroshi Ishii. Venous Materials: Towards Interactive Fluidic Mechanisms. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–14. Honolulu HI USA, April 2020. ACM. doi:10.1145/3313831.3376129.
- R52
Joseph T. Muth, Daniel M. Vogt, Ryan L. Truby, Yiğit Mengüç, David B. Kolesky, Robert J. Wood, and Jennifer A. Lewis. Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 26(36):6307–6312, 2014. doi:10.1002/adma.201400334.
- R53
Cagdas D. Onal and Daniela Rus. A modular approach to soft robots. In 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 1038–1045. June 2012. doi:10.1109/BioRob.2012.6290290.
- R54
Cagdas D. Onal, Robert J. Wood, and Daniela Rus. Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms. In 2011 IEEE International Conference on Robotics and Automation, 4608–4613. May 2011. doi:10.1109/ICRA.2011.5980139.
- R55
Y. Park, B. Chen, and R. J. Wood. Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors. IEEE Sensors Journal, 12(8):2711–2718, August 2012. doi:10.1109/JSEN.2012.2200790.
- R56
Joseph Andrew Pepito, Hirokazu Ito, Feni Betriana, Tetsuya Tanioka, and Rozzano C. Locsin. Intelligent humanoid robots expressing artificial humanlike empathy in nursing situations. Nursing Philosophy, 21(4):e12318, 2020. doi:10.1111/nup.12318.
- R57
Rolf Pfeifer, Max Lungarella, and Fumiya Iida. The challenges ahead for bio-inspired 'soft' robotics. Communications of the ACM, 55(11):76–87, November 2012. doi:10.1145/2366316.2366335.
- R58
Panagiotis Polygerinos, Zheng Wang, Kevin C. Galloway, Robert J. Wood, and Conor J. Walsh. Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 73:135–143, November 2015. doi:10.1016/j.robot.2014.08.014.
- R59
Dong Qin, Younan Xia, and George M. Whitesides. Soft lithography for micro- and nanoscale patterning. Nature Protocols, 5(3):491–502, March 2010. doi:10.1038/nprot.2009.234.
- R60
Ziyu Ren, Wenqi Hu, Xiaoguang Dong, and Metin Sitti. Multi-functional soft-bodied jellyfish-like swimming. Nature Communications, 10(1):2703, July 2019. doi:10.1038/s41467-019-10549-7.
- R61
G. Runge, M. Wiese, L. Günther, and A. Raatz. A framework for the kinematic modeling of soft material robots combining finite element analysis and piecewise constant curvature kinematics. In 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), 7–14. April 2017. doi:10.1109/ICCAR.2017.7942652.
- R62
Daniela Rus and Michael T. Tolley. Design, fabrication and control of soft robots. Nature, 521(7553):467–475, May 2015. doi:10.1038/nature14543.
- R63
Vanessa Sanchez, Conor J. Walsh, and Robert J. Wood. Textile Technology for Soft Robotic and Autonomous Garments. Advanced Functional Materials, 31(6):2008278, 2021. doi:10.1002/adfm.202008278.
- R64
Shervin Shafiei, Meisam Omidi, Fatemeh Nasehi, Hossein Golzar, Dorsa Mohammadrezaei, Maryam Rezai Rad, and Arash Khojasteh. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. Materials Science and Engineering: C, 100:564–575, July 2019. doi:10.1016/j.msec.2019.03.003.
- R65
Robert F. Shepherd, Filip Ilievski, Wonjae Choi, Stephen A. Morin, Adam A. Stokes, Aaron D. Mazzeo, Xin Chen, Michael Wang, and George M. Whitesides. Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America, 108(51):20400–20403, December 2011. doi:10.1073/pnas.1116564108.
- R66
Ali Shtarbanov. FlowIO Development Platform - the Pneumatic "Raspberry Pi" for Soft Robotics. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, 1–6. New York, NY, USA, May 2021. Association for Computing Machinery. doi:10.1145/3411763.3451513.
- R67
Jason D. Smith, Lee E. Weiss, James E. Burgess, Alan I. West, and Phil G. Campbell. Biologically Active Blood Plasma-Based Biomaterials as a New Paradigm for Tissue Repair Therapies. Disruptive Science and Technology, 1(3):127–137, December 2012. doi:10.1089/dst.2012.0024.
- R68
Afaque Manzoor Soomro, Fida Hussain Memon, Jae-Wook Lee, Faheem Ahmed, Kyung Hwan Kim, Young Su Kim, and Kyung Hyun Choi. Fully 3D printed multi-material soft bio-inspired frog for underwater synchronous swimming. International Journal of Mechanical Sciences, 210:106725, November 2021. doi:10.1016/j.ijmecsci.2021.106725.
- R69
Bjorn Sparrman, Cosima du Pasquier, Charles Thomsen, Shokofeh Darbari, Rami Rustom, Jared Laucks, Kristina Shea, and Skylar Tibbits. Printed silicone pneumatic actuators for soft robotics. Additive Manufacturing, 40:101860, April 2021. doi:10.1016/j.addma.2021.101860.
- R70
K. Suzumori, S. Endo, T. Kanda, N. Kato, and H. Suzuki. A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot. In Proceedings 2007 IEEE International Conference on Robotics and Automation, 4975–4980. April 2007. doi:10.1109/ROBOT.2007.364246.
- R71
J. E. M. Teoh, R.C. Mysa, T.V. Truong, and P. Valdivia y Alvarado. Propulsive performance of an undulating fin soft robot. In Global Oceans 2020: Singapore – U.S. Gulf Coast, 1–5. October 2020. doi:10.1109/IEEECONF38699.2020.9389238.
- R72
Marc Teyssier, Gilles Bailly, Catherine Pelachaud, Eric Lecolinet, Andrew Conn, and Anne Roudaut. Skin-On Interfaces: A Bio-Driven Approach for Artificial Skin Design to Cover Interactive Devices. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST '19, 307–322. New York, NY, USA, October 2019. Association for Computing Machinery. doi:10.1145/3332165.3347943.
- R73
M. T. Tolley, R. F. Shepherd, M. Karpelson, N. W. Bartlett, K. C. Galloway, M. Wehner, R. Nunes, G. M. Whitesides, and R. J. Wood. An untethered jumping soft robot. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 561–566. September 2014. doi:10.1109/IROS.2014.6942615.
- R74
Deepak Trivedi, Christopher D. Rahn, William M. Kier, and Ian D. Walker. Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 5(3):99–117, January 2008. doi:10.1080/11762320802557865.
- R75
Alessandro Ubaldi, Mirko Gelsomini, Marzia Degiorgi, Giulia Leonardi, Simone Penati, Noëlie Ramuzat, Jacopo Silvestri, and Franca Garzotto. Puffy, a Friendly Inflatable Social Robot. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI EA '18, 1. New York, NY, USA, April 2018. Association for Computing Machinery. doi:10.1145/3170427.3186595.
- R76
Nianfeng Wang, Bicheng Chen, XianDong Ge, Xianmin Zhang, and Wei Chen. Design, Kinematics, and Application of Axially and Radially Expandable Modular Soft Pneumatic Actuators. Journal of Mechanisms and Robotics, March 2021. doi:10.1115/1.4049973.
- R77
Michael Wehner, Ryan L. Truby, Daniel J. Fitzgerald, Bobak Mosadegh, George M. Whitesides, Jennifer A. Lewis, and Robert J. Wood. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536(7617):451–455, August 2016. doi:10.1038/nature19100.
- R78
Younan Xia and George M. Whitesides. Soft Lithography. Angewandte Chemie International Edition, 37(5):550–575, 1998. doi:10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
- R79
Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. PneUI: pneumatically actuated soft composite materials for shape changing interfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST '13, 13–22. New York, NY, USA, October 2013. Association for Computing Machinery. doi:10.1145/2501988.2502037.
- R80
Lining Yao, Jifei Ou, Guanyun Wang, Chin-Yi Cheng, Wen Wang, Helene Steiner, and Hiroshi Ishii. bioPrint: A Liquid Deposition Printing System for Natural Actuators. 3D Printing and Additive Manufacturing, 2(4):168–179, December 2015. doi:10.1089/3dp.2015.0033.
- R81
Yoram Yekutieli, Roni Sagiv-Zohar, Ranit Aharonov, Yaakov Engel, Binyamin Hochner, and Tamar Flash. Dynamic Model of the Octopus Arm. I. Biomechanics of the Octopus Reaching Movement. Journal of Neurophysiology, 94(2):1443–1458, August 2005. doi:10.1152/jn.00684.2004.
- R82
Jiachen Zhang and Eric Diller. Untethered Miniature Soft Robots: Modeling and Design of a Millimeter-Scale Swimming Magnetic Sheet. Soft Robotics, 5(6):761–776, September 2018. doi:10.1089/soro.2017.0126.
- R83
K. Zhang, Y. Zhu, C. Lou, P. Zheng, and M. Kovač. A Design and Fabrication Approach for Pneumatic Soft Robotic Arms Using 3D Printed Origami Skeletons. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 821–827. April 2019. doi:10.1109/ROBOSOFT.2019.8722719.
- R84
JiaKang Zou, MengKe Yang, and GuoQing Jin. A five-way directional soft valve with a case study: a starfish like soft robot. In 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), 130–134. September 2020. doi:10.1109/CACRE50138.2020.9230177.
- R85
Cosima du Pasquier, Tian Chen, Skylar Tibbits, and Kristina Shea. Design and Computational Modeling of a 3D Printed Pneumatic Toolkit for Soft Robotics. Soft Robotics, 6(5):657–663, June 2019. doi:10.1089/soro.2018.0095.
Other References¶
- OR1
Fuwen Hu, Limei Lyu, and Yunhua He. A 3D Printed Paper-Based Thermally Driven Soft Robotic Gripper Inspired by Cabbage. International Journal of Precision Engineering and Manufacturing, 20(11):1915–1928, November 2019. doi:10.1007/s12541-019-00199-6.
- OR2
Rebecca K. Kramer, Carmel Majidi, Ranjana Sahai, and Robert J. Wood. Soft curvature sensors for joint angle proprioception. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1919–1926. September 2011. doi:10.1109/IROS.2011.6094701.
- OR3
B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C.J. Walsh, and G.M. Whitesides. Pneumatic Networks for Soft Robotics that Actuate Rapidly. Advanced Functional Materials, 24(15):2163–70, April 2014. doi:10.1002/adfm.201303288.
- OR4
Thanh Vo Nhu and Hideyuki Sawada. Singing performance of the talking robot with newly redesigned artificial vocal cords. In 2017 IEEE International Conference on Mechatronics and Automation (ICMA), 665–670. August 2017. doi:10.1109/ICMA.2017.8015895.
- OR5
Saul Schaffer, Emily Wang, Nathan Cooper, Bo Li, Zeynep Temel, Ozan Akkus, and Victoria A. Webster-Wood. Ultra Low-Cost Printable Folding Robots. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3726–3731. October 2020. doi:10.1109/IROS45743.2020.9340756.
- OR6
Wenhuan Sun, Saul Schaffer, Kevin Dai, Lining Yao, Adam Feinberg, and Victoria Webster-Wood. 3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini-Review on Fabrication Techniques, Applications, and Challenges. Frontiers in Robotics and AI, 2021. URL: https://www.frontiersin.org/article/10.3389/frobt.2021.673533 (visited on 2022-02-06).
- OR7
Vo Nhu Thanh and Hideyuki Sawada. Speech Analysis of the Talking Robot with Human-like Artificial Vocal Tract. In 2020 IEEE International Conference on Mechatronics and Automation (ICMA), 1912–1917. October 2020. doi:10.1109/ICMA49215.2020.9233660.
- OR8
Michael T. Tolley, Robert F. Shepherd, Bobak Mosadegh, Kevin C. Galloway, Michael Wehner, Michael Karpelson, Robert J. Wood, and George M. Whitesides. A Resilient, Untethered Soft Robot. Soft Robotics, 1(3):213–223, September 2014. doi:10.1089/soro.2014.0008.
- OR9
Shuai Wu, Qiji Ze, Jize Dai, Nupur Udipi, Glaucio H. Paulino, and Ruike Zhao. Stretchable origami robotic arm with omnidirectional bending and twisting. Proceedings of the National Academy of Sciences, September 2021. doi:10.1073/pnas.2110023118.
- OR10
Junjun Xu, Bo Liu, Kangjie Li, Yixiong Feng, Hao Zheng, and Yicong Gao. Design and structure analysis of multi-legged bionic soft robot. In 2020 International Conference on Advanced Mechatronic Systems (ICAMechS), 180–185. December 2020. doi:10.1109/ICAMechS49982.2020.9310122.
- OR11
ikinamo. Utterance robot finally got the same voice as humans. July 2011. URL: https://www.youtube.com/watch?v=HmSYnOvEueo (visited on 2022-02-02).