Bibliography of Soft Robotics (S25)

The readings are a centerpiece of the course. We will together be exploring the soft robotics and art literature. Following are some suggested starting points for robotics literature searches. The Guide to Library Resources page addresses more details of the literature search process.

The papers are categorized in the following sections with brief descriptions. The citations in the descriptions link further below to the full bibliographic references. A few papers relate to the Related Work Videos.

The bibliographies from previous course iterations are archived:

Surveys and Overviews of Soft Robotics

  • A 2013 survey of biologically inpired soft robots [R35] (2013).

  • A survey of soft robots in 2015 from a biomimetic perspective [R74]. (2015).

  • Soft robotics: Technologies and systems pushing the boundaries of robot abilities [R38] (2016).

  • Soft Actuators for Small-Scale Robotics [R24] (2017).

  • Soft Mobile Robots: a Review of Soft Robotic Locomotion Modes [R85] (2021).

Manipulators

  • Design of a soft 2D robotic arm [R54] (2014). Multiple segments flexing in a horizontal plane.

  • Closed structure soft robotic gripper [R68] (2018).

  • Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping [R102] (2020).

  • Inflatable Particle-Jammed Robotic Gripper Based on Integration of Positive Pressure and Partial Filling [R96] (2022).

  • DeltaHands: A Synergistic Dexterous Hand Framework Based on Delta Robots [R81] (2024).

Sensors

  • Soft curvature sensors for joint angle proprioception [R37] (2011).

  • Model-Based Sensor Fusion Approach for Force and Shape Estimation [R64] (2020). Integration of capacitive and pressure sensing to estimate state of soft pad and finger.

Actuators

  • jamSheets: thin interfaces with tunable stiffness enabled by layer jamming [R67] (2014).

  • Soft LEGO [R41] (2018). Modular soft pneumatically-driven LEGO blocks compatible with rigid LEGO blocks. Includes design examples of mixed hard and soft structures.

  • Electroactive textile actuators [R20] (2018). A variety of fabric actuators using dielectric effects (and high voltages).

  • Printing ferromagnetic domains for untethered fast-transforming soft materials [R36] (2018).

  • Customizable Three-Dimensional-Printed Origami Soft Robotic Joint With Effective Behavior Shaping for Safe Interactions [R106] (2019).

  • A five-way directional soft valve with a case study: a starfish like soft robot [R114] (2020).

  • Inflatable soft jumper inspired by shell snapping [R18] (2020).

  • Soft Electrohydraulic Actuators for Origami Inspired Shape-Changing Interfaces [R116] (2021).

  • Bio-Inspired Miniature Soft Robots Fueled By Light [R19] (2023).

  • Earthworm-inspired multimodal soft actuators [R89] (2023).

  • Programmable inflatable origami [R62] (2023).

  • Reconfigurable kirigami skins steer a soft robot [R77] (2023).

  • Robotic Metamaterials: A Modular System for Hands-On Configuration of Ad-Hoc Dynamic Applications [R13] (2024).

Energy and Power

  • Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics [R97] (2014). Survey of power solutions.

Control, Dynamics, and Modeling

  • Modeling locomotion of a soft-bodied arthropod [R75] (2010). Analysis of caterpillar locomotion, intended to inspire biomimetic soft locomotion.

Design and Fabrication of Soft Robots

  • Thermally Tunable, Self-Healing Composites [R10] (2014). Novel open-cell foam coated in wax.

  • Survey of methods for fabrication of soft fluidic elastomer robots [R53] (2015).

  • An integrated design and fabrication strategy for entirely soft, autonomous robots [R98] (2016). Fully soft robots with microfluidic logic and chemical fuel.

  • Soft Robotic Blocks: Introducing SoBL, a Fast-Build Modularized Design Block [R42] (2016).

  • Development of magnet connection of modular units for soft robotics [R40] (2017).

  • Fabrication, modeling, and control of plush robots [R6] (2017).

  • Animatronic soft robots by additive folding [R107] (2018).

  • A Design and Fabrication Approach for Pneumatic Soft Robotic Arms Using 3D Printed Origami Skeletons [R109] (2019).

  • Design and Computational Modeling of a 3D Printed Pneumatic Toolkit for Soft Robotics [R115] (2019). Compliant and rigid parts fabricated using 3D printing.

  • Bubble casting soft robotics [R33] (2021).

  • Printed silicone pneumatic actuators for soft robotics [R84] (2021). Rapid Liquid Printing of silicone to fabricate without casting.

  • Therms-Up!: DIY Inflatables and Interactive Materials by Upcycling Wasted Thermoplastic Bags [A1] (2021).

  • Programmable Digital Weaves [R43] (2022). video: https://www.youtube.com/watch?v=OQfsXoXeAwg

Locomotion

  • Undulatory serpentine locomotion [R65] (2013). Snake comprising four fluidic elastomer actuators, includes rigid components for power and control.

  • Untethered jumping soft robot [R90] (2014). Uses chemical fuel for explosive propulsion.

  • Controllable ‘Somersault’ Magnetic Soft Robotics: [R110] (2014). Polymer devices with embedded magnets controlled by external field.

  • Bioinspired setae for soft worm robot locomotion [R51] (2018).

  • Eversion and Retraction of a Soft Robot Towards the Exploration of Coral Reefs [R47] (2019).

  • A Bistable Jumping Robot with Pure Soft Body Actuated by Twisted Artificial Muscle [R112] (2021).

  • Effects of lateral undulation in granular medium burrowing with a peristaltic soft robot [R14] (2023).

Microfluidic Circuits

  • Electronics-free pneumatic circuits for controlling soft-legged robots [R15] (2021).

  • Towards a Microfluidic Microcontroller Circuit Library for Soft Robots [R22] (2022).

Swimming Robots

  • Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators [R55] (2014).

  • Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot [R11] (2015).

  • A Wire-driven Elastic Robotic Fish and its Design and CPG-Based Control [R45] (2022).

  • Designs of the Biomimetic Robotic Fishes Performing Body and/or Caudal Fin (BCF) Swimming Locomotion: A Review [R101] (2021).

Human-Robot Interaction

  • Wearable soft sensing suit for human gait measurement [R58] (2014).

  • Exo-Glove: A Wearable Robot for the Hand with a Soft Tendon Routing System [R29] (2015).

  • Puffy, a friendly inflatable social robot [R92] (2018). Video and abstract. See also Politecnico di Milano video page.

  • Anthropomorphic Face Robot having Soft Mouth Mechanism [R93] (2019). A set of actuated lips situated on a skull model.

  • Is a Soft Robot More “Natural”? Exploring the Perception of Soft Robotics in Human–Robot Interaction [R34] (2022).

  • Soft, Wearable Robotics and Haptics: Technologies, Trends, and Emerging Applications [R113] (2022).

Biomimicry and Biomechanics

  • Camouflage and Display for Soft Machines [R61] (2012).

Biomedical Applications

  • Soft robotic glove for combined assistance and at-home rehabilitation [R71] (2015).

  • A Multi-Module Soft Robotic Arm with Soft End Effector for Minimally Invasive Surgery [R8] (2019).

  • A Wearable Soft Fabric Sleeve for Upper Limb Augmentation [R27] (2021).

Carnegie Mellon Authors

Following are a sampling of papers from authors currently working at Carnegie Mellon.

  • Emma Benjaminson, Matthew Travers, and Rebecca Taylor. Steering Magnetic Robots in Two Axes with One Pair of Maxwell Coils [R4].

  • Michael J. Bennington, Tuo Wang, Jiaguo Yin, Sarah Bergbreiter, Carmel Majidi, and Victoria A. Webster-Wood. Design and Characterization of Viscoelastic McKibben Actuators with Tunable Force-Velocity Curves [R5].

  • Sarah Costrell, Mahirah Alam, Roberta L. Klatzky, Michael E. McHenry, Lynn M. Walker, and Melisa Orta Martinez. A Magnetic Soft Device for Tactile Haptic Actuation of the Fingertip [R12].

  • Alexandra Ion, Robert Kovacs, Oliver S. Schneider, Pedro Lopes, and Patrick Baudisch. Metamaterial Textures [R30].

  • Alexandra Ion, David Lindlbauer, Philipp Herholz, Marc Alexa, and Patrick Baudisch. Understanding Metamaterial Mechanisms [R31].

  • Carmel Majidi. Soft robotics: A Perspective—Current trends and prospects for the future [R49].

  • Carmel Majidi. Biphasic Conductive Inks & Organogels for Soft Machines and Bioelectronics [R50].

    1. Fernandes Minori, U. Civici, C. Shen, S. Paul, S. Bergbreiter, Z. Temel, and L. Yao. RevLock: A Reversible Self-Locking Mechanism Driven by Linear Actuators for Foldable Robots and System [R59].

  • Keshav Rajasekaran, Hyung Dae Bae, Sarah Bergbreiter, and Miao Yu. 3D Printed Bio-Inspired Hair Sensor for Directional Airflow Sensing [R73].

  • Saul Schaffer, Emily Wang, Nathan Cooper, Bo Li, Zeynep Temel, Ozan Akkus, and Victoria A. Webster-Wood. Ultra Low-Cost Printable Folding Robots [R76].

  • Zilin Si, Kevin Zhang, Oliver Kroemer, and Fatma Zeynep Temel. DeltaHands: A Synergistic Dexterous Hand Framework Based on Delta Robots [R81].

  • Derya Z. Tansel, Jacob Brenneman, Rahul Panat, and Gary K. Fedder. Aerosol-Jet-Printed Stretchable Electronic Decal Technology [R87].

Robotics References

Cited References

[R1]

Amir Ali Amiri Moghadam, Seyedhamidreza Alaie, Suborna Deb Nath, Mahdie Aghasizade Shaarbaf, James K. Min, Simon Dunham, and Bobak Mosadegh. Laser Cutting as a Rapid Method for Fabricating Thin Soft Pneumatic Actuators and Robots. Soft Robotics, 5(4):443–451, June 2018. doi:10.1089/soro.2017.0069.

[R2]

E. Mert Bahçeci and Aykut Erbaş. Contraction response of a polyelectrolyte hydrogel to nonuniformly applied electric fields. Soft Matter, 20(48):9673–9682, December 2024. doi:10.1039/D4SM01000K.

[R3]

Gianpietro Battocletti, Dimitris Boskos, Domagoj Tolić, Ivana Palunko, and Bart de Schutter. Entanglement Definitions for Tethered Robots: Exploration and Analysis. IEEE Access, 12:178153–178170, 2024. doi:10.1109/ACCESS.2024.3507217.

[R4]

Emma Benjaminson, Matthew Travers, and Rebecca Taylor. Steering Magnetic Robots in Two Axes with One Pair of Maxwell Coils. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6332–6338. October 2020. doi:10.1109/IROS45743.2020.9341078.

[R5]

Michael J. Bennington, Tuo Wang, Jiaguo Yin, Sarah Bergbreiter, Carmel Majidi, and Victoria A. Webster-Wood. Design and Characterization of Viscoelastic McKibben Actuators with Tunable Force-Velocity Curves. In 2023 IEEE International Conference on Soft Robotics (RoboSoft), 1–7. April 2023. doi:10.1109/RoboSoft55895.2023.10122014.

[R6]

James M. Bern, Grace Kumagai, and Stelian Coros. Fabrication, modeling, and control of plush robots. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3739–3746. September 2017. doi:10.1109/IROS.2017.8206223.

[R7]

Lorenzo Campioni, Gianluca Dimonte, Giorgia Sciarrone, Gabriele Righi, Conor Walsh, Marta Gandolla, Giulio Del Popolo, Silvestro Micera, and Tommaso Proietti. Preliminary Evaluation of a Soft Wearable Robot for Shoulder Movement Assistance. IEEE Transactions on Medical Robotics and Bionics, pages 1–1, 2025. doi:10.1109/TMRB.2025.3527708.

[R8]

Minghong Chen, Deshan Wang, Jiakang Zou, Lining Sun, Jin Sun, and Guoqing Jin. A Multi-Module Soft Robotic Arm with Soft End Effector for Minimally Invasive Surgery. In 2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 461–465. November 2019. doi:10.1109/WCMEIM48965.2019.00097.

[R9]

Zheng Chen, Stephan Shatara, and Xiaobo Tan. Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin. IEEE/ASME Transactions on Mechatronics, 15(3):448–459, June 2010. doi:10.1109/TMECH.2009.2027812.

[R10]

Nadia G. Cheng, Arvind Gopinath, Lifeng Wang, Karl Iagnemma, and Anette E. Hosoi. Thermally Tunable, Self-Healing Composites for Soft Robotic Applications. Macromolecular Materials and Engineering, 299(11):1279–1284, 2014. doi:10.1002/mame.201400017.

[R11]

M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, and C. Laschi. Bioinspired locomotion and grasping in water: The soft eight-arm OCTOPUS robot. Bioinspiration & Biomimetics, 10(3):035003, May 2015. doi:10.1088/1748-3190/10/3/035003.

[R12]

Sarah Costrell, Mahirah Alam, Roberta L. Klatzky, Michael E. McHenry, Lynn M. Walker, and Melisa Orta Martinez. A Magnetic Soft Device for Tactile Haptic Actuation of the Fingertip. In 2023 IEEE World Haptics Conference (WHC), 48–55. July 2023. doi:10.1109/WHC56415.2023.10224478.

[R13]

Zhitong Cui, Shuhong Wang, Violet Yinuo Han, Tucker Rae-Grant, Willa Yunqi Yang, Alan Zhu, Scott E Hudson, and Alexandra Ion. Robotic Metamaterials: A Modular System for Hands-On Configuration of Ad-Hoc Dynamic Applications. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, CHI '24, 1–15. New York, NY, USA, May 2024. Association for Computing Machinery. doi:10.1145/3613904.3642891.

[R14]

Riddhi Das, Saravana Prashanth Murali Babu, Alessio Mondini, and Barbara Mazzolai. Effects of lateral undulation in granular medium burrowing with a peristaltic soft robot. In 2023 IEEE International Conference on Soft Robotics (RoboSoft), 1–6. April 2023. doi:10.1109/RoboSoft55895.2023.10122062.

[R15]

Dylan Drotman, Saurabh Jadhav, David Sharp, Christian Chan, and Michael T. Tolley. Electronics-free pneumatic circuits for controlling soft-legged robots. Science Robotics, February 2021. doi:10.1126/scirobotics.aay2627.

[R16]

Mable Fok, Qidi Liu, and Mei Yang. Biomimicry in Microwave Photonic and Fiber Optic Sensors Embedded Soft Robotics. In 2022 Optical Fiber Communications Conference and Exhibition (OFC), 01–03. March 2022. URL: https://ieeexplore.ieee.org/document/9748388 (visited on 2025-01-22).

[R17]

Abhinav M. Gaikwad, Alla M. Zamarayeva, Jamesley Rousseau, Howie Chu, Irving Derin, and Daniel A Steingart. Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric. Advanced Materials, 24(37):5071–5076, 2012. doi:10.1002/adma.201201329.

[R18]

Benjamin Gorissen, David Melancon, Nikolaos Vasios, Mehdi Torbati, and Katia Bertoldi. Inflatable soft jumper inspired by shell snapping. Science Robotics, 5(42):eabb1967, May 2020. doi:10.1126/scirobotics.abb1967.

[R19]

Ming Gu and Tim J. Echtermeyer. Bio-Inspired Miniature Soft Robots Fueled By Light. In 2023 IEEE International Conference on Soft Robotics (RoboSoft), 1–6. April 2023. doi:10.1109/RoboSoft55895.2023.10121980.

[R20]

J. Guo, C. Xiang, T. Helps, M. Taghavi, and J. Rossiter. Electroactive textile actuators for wearable and soft robots. In 2018 IEEE International Conference on Soft Robotics (RoboSoft), 339–343. April 2018. doi:10.1109/ROBOSOFT.2018.8404942.

[R21]

Pilwon Heo, Gwang Min Gu, Soo-jin Lee, Kyehan Rhee, and Jung Kim. Current hand exoskeleton technologies for rehabilitation and assistive engineering. International Journal of Precision Engineering and Manufacturing, 13(5):807–824, May 2012. doi:10.1007/s12541-012-0107-2.

[R22]

Elizabeth Gallardo Hevia, Louis De La Rochefoucauld, and Robert J. Wood. Towards a Microfluidic Microcontroller Circuit Library for Soft Robots. In 2022 International Conference on Robotics and Automation (ICRA), 7138–7144. May 2022. doi:10.1109/ICRA46639.2022.9812219.

[R23]

Ken Hinckley. So you're a program committee member now: On excellence in reviews and meta-reviews and championing submitted work that has merit. January 2015. URL: https://www.microsoft.com/en-us/research/publication/youre-program-committee-member-now-excellence-reviews-meta-reviews-championing-submitted-work-merit/.

[R24]

Lindsey Hines, Kirstin Petersen, Guo Zhan Lum, and Metin Sitti. Soft Actuators for Small-Scale Robotics. Advanced Materials, 29(13):1603483, 2017. doi:10.1002/adma.201603483.

[R25]

G. Hiramandala, T. Calais, T. Stalin, A. Chooi, A. R. Plamootil Mathai, S. Jain, Elgar Vikram Kanhere, and P. Valdivia y Alvarado. Design and Additive Manufacturing of a Hedgehog-Inspired Soft Robot Companion. In 2023 IEEE International Conference on Soft Robotics (RoboSoft), 1–7. April 2023. doi:10.1109/RoboSoft55895.2023.10121945.

[R26]

Toshinori Hirose, Shingo Kitagawa, Shun Hasegawa, Yohei Kakiuchi, Kei Okada, and Masayuki Inaba. Waterproof Soft Robot Hand with Variable Stiffness Wire-driven Finger Mechanism Using Low Melting Point Alloy for Contact Pressure Distribution and Concentration. In 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), 109–116. April 2022. doi:10.1109/RoboSoft54090.2022.9762208.

[R27]

Trung Thien Hoang, Luke Sy, Mattia Bussu, Mai Thanh Thai, Harrison Low, Phuoc Thien Phan, James Davies, Chi Cong Nguyen, Nigel H. Lovell, and Thanh Nho Do. A Wearable Soft Fabric Sleeve for Upper Limb Augmentation. Sensors, 21(22):7638, January 2021. doi:10.3390/s21227638.

[R28]

Filip Ilievski, Aaron D. Mazzeo, Robert F. Shepherd, Xin Chen, and George M. Whitesides. Soft Robotics for Chemists. Angewandte Chemie International Edition, 50(8):1890–1895, 2011. doi:10.1002/anie.201006464.

[R29]

Hyunki In, Brian Byunghyun Kang, MinKi Sin, and Kyu-Jin Cho. Exo-Glove: A Wearable Robot for the Hand with a Soft Tendon Routing System. IEEE Robotics & Automation Magazine, 22(1):97–105, March 2015. doi:10.1109/MRA.2014.2362863.

[R30]

Alexandra Ion, Robert Kovacs, Oliver S. Schneider, Pedro Lopes, and Patrick Baudisch. Metamaterial Textures. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–12. Montreal QC Canada, April 2018. ACM. doi:10.1145/3173574.3173910.

[R31]

Alexandra Ion, David Lindlbauer, Philipp Herholz, Marc Alexa, and Patrick Baudisch. Understanding Metamaterial Mechanisms. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–14. Glasgow Scotland Uk, May 2019. ACM. doi:10.1145/3290605.3300877.

[R32]

Hao Jiang, Zhanchi Wang, Yusong Jin, Xiaotong Chen, Peijin Li, Yinghao Gan, Sen Lin, and Xiaoping Chen. Hierarchical control of soft manipulators towards unstructured interactions. The International Journal of Robotics Research, 40(1):411–434, January 2021. doi:10.1177/0278364920979367.

[R33]

Trevor J. Jones, Etienne Jambon-Puillet, Joel Marthelot, and P.-T. Brun. Bubble casting soft robotics. Nature, 599(7884):229–233, November 2021. doi:10.1038/s41586-021-04029-6.

[R34]

Jonas Jørgensen, Kirsten Borup Bojesen, and Elizabeth Jochum. Is a Soft Robot More “Natural”? Exploring the Perception of Soft Robotics in Human–Robot Interaction. International Journal of Social Robotics, 14(1):95–113, January 2022. doi:10.1007/s12369-021-00761-1.

[R35]

Sangbae Kim, Cecilia Laschi, and Barry Trimmer. Soft robotics: A bioinspired evolution in robotics. Trends in Biotechnology, 31(5):287–294, May 2013. doi:10.1016/j.tibtech.2013.03.002.

[R36]

Yoonho Kim, Hyunwoo Yuk, Ruike Zhao, Shawn A. Chester, and Xuanhe Zhao. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 558(7709):274–279, June 2018. doi:10.1038/s41586-018-0185-0.

[R37]

Rebecca K. Kramer, Carmel Majidi, Ranjana Sahai, and Robert J. Wood. Soft curvature sensors for joint angle proprioception. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1919–1926. September 2011. doi:10.1109/IROS.2011.6094701.

[R38]

Cecilia Laschi, Barbara Mazzolai, and Matteo Cianchetti. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics, 1(1):eaah3690, December 2016. doi:10.1126/scirobotics.aah3690.

[R39]

Theresa Law, Bertram F. Malle, and Matthias Scheutz. A Touching Connection: How Observing Robotic Touch Can Affect Human Trust in a Robot. International Journal of Social Robotics, 13(8):2003–2019, December 2021. doi:10.1007/s12369-020-00729-7.

[R40]

J. Lee and K. Cho. Development of magnet connection of modular units for soft robotics. In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 65–67. June 2017. doi:10.1109/URAI.2017.7992886.

[R41]

J. Lee, J. Eom, W. Choi, and K. Cho. Soft LEGO: Bottom-Up Design Platform for Soft Robotics. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 7513–7520. October 2018. doi:10.1109/IROS.2018.8593546.

[R42]

J. Lee, W. Kim, W. Choi, and K. Cho. Soft Robotic Blocks: Introducing SoBL, a Fast-Build Modularized Design Block. IEEE Robotics Automation Magazine, 23(3):30–41, September 2016. doi:10.1109/MRA.2016.2580479.

[R43]

Yue Li, Juan Montes, Bernhard Thomaszewski, and Stelian Coros. Programmable Digital Weaves. IEEE Robotics and Automation Letters, 7(2):2891–2896, April 2022. doi:10.1109/LRA.2022.3145948.

[R44]

Jiahe Liao, Xianqiang Bao, Minjo Park, and Metin Sitti. Energetically Autonomous Soft Robots: An Embodied Actuation Strategy by Liquid Metal Metabolism. In 2024 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 1–8. July 2024. doi:10.1109/MARSS61851.2024.10612728.

[R45]

Xiaocun Liao, Chao Zhou, Jian Wang, Junfeng Fan, and Zhuoliang Zhang. A Wire-driven Elastic Robotic Fish and its Design and CPG-Based Control. Journal of Intelligent & Robotic Systems, 107(1):4, December 2022. doi:10.1007/s10846-022-01797-9.

[R46]

Huai-Ti Lin, Gary G. Leisk, and Barry Trimmer. GoQBot: A caterpillar-inspired soft-bodied rolling robot. Bioinspiration & Biomimetics, 6(2):026007, April 2011. doi:10.1088/1748-3182/6/2/026007.

[R47]

Jamie Luong, Paul Glick, Aaron Ong, Maya S. deVries, Stuart Sandin, Elliot W. Hawkes, and Michael T. Tolley. Eversion and Retraction of a Soft Robot Towards the Exploration of Coral Reefs. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 801–807. April 2019. doi:10.1109/ROBOSOFT.2019.8722730.

[R48]

Ruile Ma, Jinzhu Peng, Pengfei Yu, and Nan Zhao. Biomimetic Design and Kinematic Analysis of a Rope-Driven Soft Robotic Arm. In 2024 9th International Conference on Automation, Control and Robotics Engineering (CACRE), 209–213. July 2024. doi:10.1109/CACRE62362.2024.10635043.

[R49]

Carmel Majidi. Soft robotics: A Perspective—Current trends and prospects for the future. Soft Robotics, 1(1):5–11, 2013-07-17, 2013. doi:10.1089/soro.2013.0001.

[R50]

Carmel Majidi. Biphasic Conductive Inks & Organogels for Soft Machines and Bioelectronics. In 2023 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 1–3. July 2023. doi:10.1109/FLEPS57599.2023.10220423.

[R51]

Thomas Manwell, Binjie Guo, Junghwan Back, and Hongbin Liu. Bioinspired setae for soft worm robot locomotion. In 2018 IEEE International Conference on Soft Robotics (RoboSoft), 54–59. April 2018. doi:10.1109/ROBOSOFT.2018.8404896.

[R52]

Shixin Mao, Erbao Dong, Hu Jin, Min Xu, and K. H. Low. Locomotion and gait analysis of multi-limb soft robots driven by smart actuators. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2438–2443. October 2016. doi:10.1109/IROS.2016.7759380.

[R53]

Andrew D. Marchese, Robert K. Katzschmann, and Daniela Rus. A Recipe for Soft Fluidic Elastomer Robots. Soft Robotics, 2(1):7–25, March 2015. doi:10.1089/soro.2014.0022.

[R54]

Andrew D. Marchese, Konrad Komorowski, Cagdas D. Onal, and Daniela Rus. Design and control of a soft and continuously deformable 2D robotic manipulation system. In 2014 IEEE International Conference on Robotics and Automation (ICRA), 2189–2196. May 2014. doi:10.1109/ICRA.2014.6907161.

[R55]

Andrew D. Marchese, Cagdas D. Onal, and Daniela Rus. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. Soft Robotics, 1(1):75–87, February 2014. doi:10.1089/soro.2013.0009.

[R56]

Ramses V. Martinez, Carina R. Fish, Xin Chen, and George M. Whitesides. Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators. Advanced Functional Materials, 22(7):1376–1384, 2012. doi:10.1002/adfm.201102978.

[R57]

Conor McGinn and Dylan Dooley. What Should Robots Feel Like? In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, HRI '20, 281–288. New York, NY, USA, March 2020. Association for Computing Machinery. doi:10.1145/3319502.3374835.

[R58]

Yiğit Mengüç, Yong-Lae Park, Hao Pei, Daniel Vogt, Patrick M. Aubin, Ethan Winchell, Lowell Fluke, Leia Stirling, Robert J. Wood, and Conor J. Walsh. Wearable soft sensing suit for human gait measurement. The International Journal of Robotics Research, 33(14):1748–1764, December 2014. doi:10.1177/0278364914543793.

[R59]

A. Fernandes Minori, U. Civici, C. Shen, S. Paul, S. Bergbreiter, Z. Temel, and L. Yao. RevLock: A Reversible Self-Locking Mechanism Driven by Linear Actuators for Foldable Robots and Systems. IEEE Robotics and Automation Letters, 8(11):7432–7439, November 2023. doi:10.1109/LRA.2023.3315215.

[R60]

Hila Mor, Tianyu Yu, Ken Nakagaki, Benjamin Harvey Miller, Yichen Jia, and Hiroshi Ishii. Venous Materials: Towards Interactive Fluidic Mechanisms. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–14. Honolulu HI USA, April 2020. ACM. doi:10.1145/3313831.3376129.

[R61]

Stephen A. Morin, Robert F. Shepherd, Sen Wai Kwok, Adam A. Stokes, Alex Nemiroski, and George M. Whitesides. Camouflage and Display for Soft Machines. Science, 337(6096):828–832, August 2012. doi:10.1126/science.1222149.

[R62]

Saravana Prashanth Murali Babu, Riddhi Das, Barbara Mazzolai, and Ahmad Rafsanjani. Programmable inflatable origami. In 2023 IEEE International Conference on Soft Robotics (RoboSoft), 1–6. April 2023. doi:10.1109/RoboSoft55895.2023.10122007.

[R63]

Joseph T. Muth, Daniel M. Vogt, Ryan L. Truby, Yiğit Mengüç, David B. Kolesky, Robert J. Wood, and Jennifer A. Lewis. Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 26(36):6307–6312, 2014. doi:10.1002/adma.201400334.

[R64]

Stefan Escaida Navarro, Steven Nagels, Hosam Alagi, Lisa-Marie Faller, Olivier Goury, Thor Morales-Bieze, Hubert Zangl, Björn Hein, Raf Ramakers, Wim Deferme, Gang Zheng, and Christian Duriez. A Model-Based Sensor Fusion Approach for Force and Shape Estimation in Soft Robotics. IEEE Robotics and Automation Letters, 5(4):5621–5628, October 2020. doi:10.1109/LRA.2020.3008120.

[R65]

Cagdas D. Onal and Daniela Rus. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspiration & Biomimetics, 8(2):026003, March 2013. doi:10.1088/1748-3182/8/2/026003.

[R66]

Cagdas D. Onal, Robert J. Wood, and Daniela Rus. Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms. In 2011 IEEE International Conference on Robotics and Automation, 4608–4613. May 2011. doi:10.1109/ICRA.2011.5980139.

[R67]

Jifei Ou, Lining Yao, Daniel Tauber, Jurgen Steimle, Ryuma Niiyama, and Hiroshi Ishii. jamSheets: thin interfaces with tunable stiffness enabled by layer jamming. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, TEI '14, 65–72. New York, NY, USA, February 2014. Association for Computing Machinery. doi:10.1145/2540930.2540971.

[R68]

Pedro P., Ananda C., Rafael P.B., Carlos A.R., and Alexandre B.C. Closed structure soft robotic gripper. In 2018 IEEE International Conference on Soft Robotics (RoboSoft), 66–70. April 2018. doi:10.1109/ROBOSOFT.2018.8404898.

[R69]

Y. Park, B. Chen, and R. J. Wood. Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors. IEEE Sensors Journal, 12(8):2711–2718, August 2012. doi:10.1109/JSEN.2012.2200790.

[R70]

Alix J. Partridge, Hsing-Yu Chen, Nguyen Hao Le, Ciqun Xu, Hendrik Eichorn, Emanuele Pulvirenti, Arianna Manzini, Andrew T. Conn, and Jonathan Rossiter. ReRobot: Recycled Materials for Trustworthy Soft Robots. In 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), 148–153. April 2022. doi:10.1109/RoboSoft54090.2022.9762170.

[R71]

Panagiotis Polygerinos, Zheng Wang, Kevin C. Galloway, Robert J. Wood, and Conor J. Walsh. Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 73:135–143, November 2015. doi:10.1016/j.robot.2014.08.014.

[R72]

Dong Qin, Younan Xia, and George M. Whitesides. Soft lithography for micro- and nanoscale patterning. Nature Protocols, 5(3):491–502, March 2010. doi:10.1038/nprot.2009.234.

[R73]

Keshav Rajasekaran, Hyung Dae Bae, Sarah Bergbreiter, and Miao Yu. 3D Printed Bio-Inspired Hair Sensor for Directional Airflow Sensing. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 8945–8950. October 2020. doi:10.1109/IROS45743.2020.9340711.

[R74]

Daniela Rus and Michael T. Tolley. Design, fabrication and control of soft robots. Nature, 521(7553):467–475, May 2015. doi:10.1038/nature14543.

[R75]

Frank Saunders, Barry A. Trimmer, and Jason Rife. Modeling locomotion of a soft-bodied arthropod using inverse dynamics. Bioinspiration & Biomimetics, 6(1):016001, December 2010. doi:10.1088/1748-3182/6/1/016001.

[R76]

Saul Schaffer, Emily Wang, Nathan Cooper, Bo Li, Zeynep Temel, Ozan Akkus, and Victoria A. Webster-Wood. Ultra Low-Cost Printable Folding Robots. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3726–3731. October 2020. doi:10.1109/IROS45743.2020.9340756.

[R77]

Burcu Seyidoğlu, Saravana Prashanth Murali Babu, and Ahmad Rafsanjani. Reconfigurable kirigami skins steer a soft robot. In 2023 IEEE International Conference on Soft Robotics (RoboSoft), 1–6. April 2023. doi:10.1109/RoboSoft55895.2023.10121995.

[R78]

Wanliang Shan, Tong Lu, and Carmel Majidi. Soft-matter composites with electrically tunable elastic rigidity. Smart Materials and Structures, 22(8):085005, July 2013. doi:10.1088/0964-1726/22/8/085005.

[R79]

Robert F. Shepherd, Filip Ilievski, Wonjae Choi, Stephen A. Morin, Adam A. Stokes, Aaron D. Mazzeo, Xin Chen, Michael Wang, and George M. Whitesides. Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America, 108(51):20400–20403, December 2011. doi:10.1073/pnas.1116564108.

[R80]

Jun Shintake, Herbert Shea, and Dario Floreano. Biomimetic underwater robots based on dielectric elastomer actuators. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4957–4962. October 2016. doi:10.1109/IROS.2016.7759728.

[R81] (1,2)

Zilin Si, Kevin Zhang, Oliver Kroemer, and Fatma Zeynep Temel. DeltaHands: A Synergistic Dexterous Hand Framework Based on Delta Robots. IEEE Robotics and Automation Letters, 9(2):1795–1802, February 2024. doi:10.1109/LRA.2024.3349920.

[R82]

Abu Nayem Md. Asraf Siddiquee and Yasemin Ozkan-Aydin. Utilizing Bioinspired Soft Modular Appendages for Grasping and Locomotion in Multi-Legged Robots on Ground and Underwater. IEEE Robotics and Automation Letters, 9(4):3862–3869, April 2024. doi:10.1109/LRA.2024.3372834.

[R83]

Daniela Sofronova and Radostina A. Angelova. Embedding Sensors by E-embroidery: Practical Steps for Smart Textiles Production. In 2021 6th International Symposium on Environment-Friendly Energies and Applications (EFEA), 1–5. March 2021. doi:10.1109/EFEA49713.2021.9406219.

[R84]

Bjorn Sparrman, Cosima du Pasquier, Charles Thomsen, Shokofeh Darbari, Rami Rustom, Jared Laucks, Kristina Shea, and Skylar Tibbits. Printed silicone pneumatic actuators for soft robotics. Additive Manufacturing, 40:101860, April 2021. doi:10.1016/j.addma.2021.101860.

[R85]

Yinan Sun, Aihaitijiang Abudula, Hao Yang, Shou-Shan Chiang, Zhenyu Wan, Selim Ozel, Robin Hall, Erik Skorina, Ming Luo, and Cagdas D. Onal. Soft Mobile Robots: a Review of Soft Robotic Locomotion Modes. Current Robotics Reports, 2(4):371–397, December 2021. doi:10.1007/s43154-021-00070-5.

[R86]

Yucheng Tang, Lei Qin, Xiaoning Li, Chee-Meng Chew, and Jian Zhu. A frog-inspired swimming robot based on dielectric elastomer actuators. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2403–2408. September 2017. doi:10.1109/IROS.2017.8206054.

[R87]

Derya Z. Tansel, Jacob Brenneman, Rahul Panat, and Gary K. Fedder. Aerosol-Jet-Printed Stretchable Electronic Decal Technology. In 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), 353–356. January 2022. doi:10.1109/MEMS51670.2022.9699730.

[R88]

Clark B. Teeple, Justin Werfel, and Robert J. Wood. Multi-Dimensional Compliance of Soft Grippers Enables Gentle Interaction with Thin, Flexible Objects. In 2022 International Conference on Robotics and Automation (ICRA), 728–734. May 2022. doi:10.1109/ICRA46639.2022.9812324.

[R89]

Jonathan Tirado, Jonas Jørgensen, and Ahmad Rafsanjani. Earthworm-inspired multimodal soft actuators. In 2023 IEEE International Conference on Soft Robotics (RoboSoft), 1–6. April 2023. doi:10.1109/RoboSoft55895.2023.10122032.

[R90]

M. T. Tolley, R. F. Shepherd, M. Karpelson, N. W. Bartlett, K. C. Galloway, M. Wehner, R. Nunes, G. M. Whitesides, and R. J. Wood. An untethered jumping soft robot. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 561–566. September 2014. doi:10.1109/IROS.2014.6942615.

[R91]

Michael T. Tolley, Robert F. Shepherd, Bobak Mosadegh, Kevin C. Galloway, Michael Wehner, Michael Karpelson, Robert J. Wood, and George M. Whitesides. A Resilient, Untethered Soft Robot. Soft Robotics, 1(3):213–223, September 2014. doi:10.1089/soro.2014.0008.

[R92]

Alessandro Ubaldi, Mirko Gelsomini, Marzia Degiorgi, Giulia Leonardi, Simone Penati, Noëlie Ramuzat, Jacopo Silvestri, and Franca Garzotto. Puffy, a Friendly Inflatable Social Robot. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI EA '18, 1. New York, NY, USA, April 2018. Association for Computing Machinery. doi:10.1145/3170427.3186595.

[R93]

Yoshiki Usui, Ryuma Niiyama, and Yasuo Kuniyoshi. Anthropomorphic Face Robot having Soft Mouth Mechanism with Embedded Artificial Facial Muscles. In 2019 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 1–6. December 2019. doi:10.1109/MHS48134.2019.9249338.

[R94]

Cheng Wang, Tianyu Zhao, Weiqi Cheng, Zhonghua Ni, and Nan Xiang. Microfluidic strategies in soft robotics: Actuators, control systems, and pumps. Device, 2(9):100551, September 2024. doi:10.1016/j.device.2024.100551.

[R95]

Xiangxing Wang, Xuan Pei, Xinyang Wang, and Taogang Hou. Bionic Robot Manta Ray Based on Dielectric Elastomer Actuator. In 2023 International Conference on Frontiers of Robotics and Software Engineering (FRSE), 387–392. June 2023. doi:10.1109/FRSE58934.2023.00060.

[R96]

Yanjie Wang, Zhiwei Yang, Han Zhou, Chun Zhao, Benjamin Barimah, Bo Li, Chaoqun Xiang, Lijie Li, Xiaofan Gou, and Minzhou Luo. Inflatable Particle-Jammed Robotic Gripper Based on Integration of Positive Pressure and Partial Filling. Soft Robotics, 9(2):309–323, April 2022. doi:10.1089/soro.2020.0139.

[R97]

Michael Wehner, Michael T. Tolley, Yiğit Mengüç, Yong-Lae Park, Annan Mozeika, Ye Ding, Cagdas Onal, Robert F. Shepherd, George M. Whitesides, and Robert J. Wood. Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics. Soft Robotics, 1(4):263–274, December 2014. doi:10.1089/soro.2014.0018.

[R98]

Michael Wehner, Ryan L. Truby, Daniel J. Fitzgerald, Bobak Mosadegh, George M. Whitesides, Jennifer A. Lewis, and Robert J. Wood. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536(7617):451–455, August 2016. doi:10.1038/nature19100.

[R99]

Brian Wright, Daniel M. Vogt, Robert J. Wood, and Ardian Jusufi. Soft Sensors for Curvature Estimation under Water in a Soft Robotic Fish. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 367–371. April 2019. doi:10.1109/ROBOSOFT.2019.8722806.

[R100]

Younan Xia and George M. Whitesides. Soft Lithography. Angewandte Chemie International Edition, 37(5):550–575, 1998. doi:10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.

[R101]

Fengran Xie, Qiyang Zuo, Qinglong Chen, Haitao Fang, Kai He, Ruxu Du, Yong Zhong, and Zheng Li. Designs of the Biomimetic Robotic Fishes Performing Body and/or Caudal Fin (BCF) Swimming Locomotion: A Review. Journal of Intelligent & Robotic Systems, 102(1):13, April 2021. doi:10.1007/s10846-021-01379-1.

[R102]

Zhexin Xie, August G. Domel, Ning An, Connor Green, Zheyuan Gong, Tianmiao Wang, Elias M. Knubben, James C. Weaver, Katia Bertoldi, and Li Wen. Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping. Soft Robotics, 7(5):639–648, October 2020. doi:10.1089/soro.2019.0082.

[R103]

Y. Yamada. Feasibility Study on Botanical Robotics: Ophiocordyceps-like Biodegradable Laminated Foam-Based Soft Actuators With Germination Ability. IEEE Robotics and Automation Letters, 6(2):3777–3784, April 2021. doi:10.1109/LRA.2021.3061355.

[R104]

Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. PneUI: Pneumatically actuated soft composite materials for shape changing interfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST '13, 13–22. New York, NY, USA, October 2013. Association for Computing Machinery. doi:10.1145/2501988.2502037.

[R105]

Lining Yao, Jifei Ou, Guanyun Wang, Chin-Yi Cheng, Wen Wang, Helene Steiner, and Hiroshi Ishii. bioPrint: A Liquid Deposition Printing System for Natural Actuators. 3D Printing and Additive Manufacturing, 2(4):168–179, December 2015. doi:10.1089/3dp.2015.0033.

[R106]

Juan Yi, Xiaojiao Chen, Chaoyang Song, Jianshu Zhou, Yujia Liu, Sicong Liu, and Zheng Wang. Customizable Three-Dimensional-Printed Origami Soft Robotic Joint With Effective Behavior Shaping for Safe Interactions. IEEE Transactions on Robotics, 35(1):114–123, February 2019. doi:10.1109/TRO.2018.2871440.

[R107]

S Yim, C Sung, S Miyashita, D Rus, and S Kim. Animatronic soft robots by additive folding. The International Journal of Robotics Research, 37(6):611–628, May 2018. doi:10.1177/0278364918772023.

[R108]

Youchan Yim, Yohei Noguchi, and Fumihide Tanaka. A wearable soft robot that can alleviate the pain and fear of the wearer. Scientific Reports, 12(1):17003, October 2022. doi:10.1038/s41598-022-21183-7.

[R109]

K. Zhang, Y. Zhu, C. Lou, P. Zheng, and M. Kovač. A Design and Fabrication Approach for Pneumatic Soft Robotic Arms Using 3D Printed Origami Skeletons. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 821–827. April 2019. doi:10.1109/ROBOSOFT.2019.8722719.

[R110]

T. S. Zhang, A. Kim, M. Ochoa, and B. Ziaie. Controllable `Somersault' magnetic soft robotics. In 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 1044–1047. January 2015. doi:10.1109/MEMSYS.2015.7051141.

[R111]

Yanqiu Zheng, Fumihiko Asano, Cong Yan, Longchuan Li, and Isao T. Tokuda. Tensegrity-Based Legged Robot Generates Passive Walking, Skipping, and Crawling Gaits in Accordance With Environment. IEEE/ASME Transactions on Mechatronics, pages 1–12, 2025. doi:10.1109/TMECH.2024.3522904.

[R112]

Dong Zhou, Yuan Fu, Jie Deng, Jin Sun, and Yingxiang Liu. A Bistable Jumping Robot with Pure Soft Body Actuated by Twisted Artificial Muscle. In 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 388–393. November 2021. doi:10.1109/M2VIP49856.2021.9665013.

[R113]

Mengjia Zhu, Shantonu Biswas, Stejara Iulia Dinulescu, Nikolas Kastor, Elliot Wright Hawkes, and Yon Visell. Soft, Wearable Robotics and Haptics: Technologies, Trends, and Emerging Applications. Proceedings of the IEEE, 110(2):246–272, February 2022. doi:10.1109/JPROC.2021.3140049.

[R114]

JiaKang Zou, MengKe Yang, and GuoQing Jin. A five-way directional soft valve with a case study: A starfish like soft robot. In 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), 130–134. September 2020. doi:10.1109/CACRE50138.2020.9230177.

[R115]

Cosima du Pasquier, Tian Chen, Skylar Tibbits, and Kristina Shea. Design and Computational Modeling of a 3D Printed Pneumatic Toolkit for Soft Robotics. Soft Robotics, 6(5):657–663, June 2019. doi:10.1089/soro.2018.0095.

[R116]

Purnendu, Eric Acome, Christoph Keplinger, Mark D Gross, Carson Bruns, and Daniel Leithinger. Soft Electrohydraulic Actuators for Origami Inspired Shape-Changing Interfaces. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, CHI EA '21, 1–6. New York, NY, USA, May 2021. Association for Computing Machinery. doi:10.1145/3411763.3451590.

Other References