Bibliography of Soft Robotics (S23)

The readings are a centerpiece of the course. We will together be exploring the soft robotics and art literature. Following are some suggested starting points for robotics literature searches. The Guide to Library Resources page addresses more details of the literature search process.

The papers are categorized in the following sections with brief descriptions. The citations in the descriptions link further below to the full bibliographic references. A few papers relate to the Videos of Related Work.

The bibliographies from previous course iterations are archived:

Surveys and Overviews of Soft Robotics

  • A 2013 survey of biologically inpired soft robots [R32] (2013).

  • A survey of soft robots in 2015 from a biomimetic perspective [R62]. (2015).

Manipulators

  • Design of a soft 2D robotic arm [R44] (2014). Multiple segments flexing in a horizontal plane.

Sensors

  • Model-Based Sensor Fusion Approach for Force and Shape Estimation [R53] (2020). Integration of capacitive and pressure sensing to estimate state of soft pad and finger.

Actuators

  • Soft LEGO [R37] (2018). Modular soft pneumatically-driven LEGO blocks compatible with rigid LEGO blocks. Includes design examples of mixed hard and soft structures.

  • Electroactive textile actuators [R19] (2018). A variety of fabric actuators using dielectric effects (and high voltages).

  • A five-way directional soft valve with a case study: a starfish like soft robot [R92] (2020).

Energy and Power

  • Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics [R77] (2014). Survey of power solutions.

Control, Dynamics, and Modeling

  • Modeling locomotion of a soft-bodied arthropod [R63] (2010). Analysis of caterpillar locomotion, intended to inspire biomimetic soft locomotion.

Design and Fabrication of Soft Robots

  • Thermally Tunable, Self-Healing Composites [R9] (2014). Novel open-cell foam coated in wax.

  • Survey of methods for fabrication of soft fluidic elastomer robots [R43] (2015).

  • An integrated design and fabrication strategy for entirely soft, autonomous robots [R78] (2016). Fully soft robots with microfluidic logic and chemical fuel.

  • Development of magnet connection of modular units for soft robotics [R36] (2017).

  • A Design and Fabrication Approach for Pneumatic Soft Robotic Arms Using 3D Printed Origami Skeletons [R87] (2019).

  • Design and Computational Modeling of a 3D Printed Pneumatic Toolkit for Soft Robotics [R94] (2019). Compliant and rigid parts fabricated using 3D printing.

  • Bubble casting soft robotics [R26] (2021).

  • Printed silicone pneumatic actuators for soft robotics [R67] (2021). Rapid Liquid Printing of silicone to fabricate without casting.

Locomotion

  • Undulatory serpentine locomotion [R54] (2013). Snake comprising four fluidic elastomer actuators, includes rigid components for power and control.

  • Untethered jumping soft robot [R70] (2014). Uses chemical fuel for explosive propulsion.

  • Controllable ‘Somersault’ Magnetic Soft Robotics: [R88] (2014). Polymer devices with embedded magnets controlled by external field.

Swimming Robots

  • Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators [R45] (2014).

Human-Robot Interaction

  • Wearable soft sensing suit for human gait measurement [R48] (2014).

  • Puffy, a friendly inflatable social robot [R71] (2018). Video and abstract. See also Politecnico di Milano video page.

  • Anthropomorphic Face Robot having Soft Mouth Mechanism [R72] (2019). A set of actuated lips situated on a skull model.

Biomimicry and Biomechanics

Biomedical Applications

  • Soft robotic glove for combined assistance and at-home rehabilitation [R58] (2015).

  • A Multi-Module Soft Robotic Arm with Soft End Effector for Minimally Invasive Surgery [R7] (2019).

  • A Wearable Soft Fabric Sleeve for Upper Limb Augmentation [R23] (2021).

Tissue Engineering

Textiles

Other Robotics

Paper which are not strictly soft robotics but which may inform soft robotics work.

  • Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms [R55] (2011).

  • Review of hand exoskeletons [R20]. (Extends well beyond soft robotics.)

  • A Touching Connection: How Observing Robotic Touch Can Affect Human Trust in a Robot [R35] (2021).

Exercise 1 Papers

Submissions related to Exercise: Reading, Searching, and Skimming.

[R7] [R9] [R10] [R11] [R19] [R23] [R26] [R32] [R35] [R36] [R45] [R48] [R52] [R53] [R54] [R56] [R63] [R69] [R70] [R71] [R72] [R77] [R88] [R87] [R92]

Exercise 2 Papers

Submissions related to Exercise: Lateral Literature Search.

[R8] [R6] [R12] [R15] [R16] [R18] [R21] [R28] [R29] [R27] [R30] [R33] [R2] [R34] [R39] [R40] [R41] [R45] [R49] [R50] [R60] [R61] [R64] [R66] [R68] [R73] [R74] [R80] [R82] [R81] [R85] [R86] [R89] [R91]

Robotics References

Cited References

[R1]

Amir Ali Amiri Moghadam, Seyedhamidreza Alaie, Suborna Deb Nath, Mahdie Aghasizade Shaarbaf, James K. Min, Simon Dunham, and Bobak Mosadegh. Laser Cutting as a Rapid Method for Fabricating Thin Soft Pneumatic Actuators and Robots. Soft Robotics, 5(4):443–451, June 2018. doi:10.1089/soro.2017.0069.

[R2]

Sina Baghbani Kordmahale, Jian Qu, Anastasia Muliana, and Jun Kameoka. A hydraulic soft microgripper for biological studies. Scientific Reports, 12(1):21403, December 2022. doi:10.1038/s41598-022-25713-1.

[R3]

James M. Bern, Grace Kumagai, and Stelian Coros. Fabrication, modeling, and control of plush robots. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3739–3746. September 2017. doi:10.1109/IROS.2017.8206223.

[R4]

James M. Bern, Leonardo Zamora Yañez, Emily Sologuren, and Daniela Rus. Contact-Rich Soft-Rigid Robots Inspired by Push Puppets. In 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft), 607–613. April 2022. doi:10.1109/RoboSoft54090.2022.9762203.

[R5]

Peter Breitman, Yoav Matia, and Amir D. Gat. Fluid Mechanics of Pneumatic Soft Robots. Soft Robotics, 8(5):519–530, October 2021. doi:10.1089/soro.2020.0037.

[R6]

Feifei Chen, Kun Liu, Yiqiang Wang, Jiang Zou, Guoying Gu, and Xiangyang Zhu. Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields. IEEE Transactions on Robotics, 35(5):1150–1165, October 2019. doi:10.1109/TRO.2019.2920108.

[R7] (1,2)

Minghong Chen, Deshan Wang, Jiakang Zou, Lining Sun, Jin Sun, and Guoqing Jin. A Multi-Module Soft Robotic Arm with Soft End Effector for Minimally Invasive Surgery. In 2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 461–465. November 2019. doi:10.1109/WCMEIM48965.2019.00097.

[R8]

Shitong Chen, Feifei Chen, Zizheng Cao, Yusheng Wang, Yunpeng Miao, Guoying Gu, and Xiangyang Zhu. Topology Optimization of Skeleton-Reinforced Soft Pneumatic Actuators for Desired Motions. IEEE/ASME Transactions on Mechatronics, 26(4):1745–1753, August 2021. doi:10.1109/TMECH.2021.3071394.

[R9] (1,2)

Nadia G. Cheng, Arvind Gopinath, Lifeng Wang, Karl Iagnemma, and Anette E. Hosoi. Thermally Tunable, Self-Healing Composites for Soft Robotic Applications. Macromolecular Materials and Engineering, 299(11):1279–1284, 2014. doi:10.1002/mame.201400017.

[R10]

M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, and C. Laschi. Bioinspired locomotion and grasping in water: The soft eight-arm OCTOPUS robot. Bioinspiration & Biomimetics, 10(3):035003, May 2015. doi:10.1088/1748-3190/10/3/035003.

[R11]

Nikolaus Correll, Çağdaş D. Önal, Haiyi Liang, Erik Schoenfeld, and Daniela Rus. Soft Autonomous Materials—Using Active Elasticity and Embedded Distributed Computation. In Oussama Khatib, Vijay Kumar, and Gaurav Sukhatme, editors, Experimental Robotics: The 12th International Symposium on Experimental Robotics, Springer Tracts in Advanced Robotics, pages 227–240. Springer, Berlin, Heidelberg, 2014. doi:10.1007/978-3-642-28572-1_16.

[R12]

Hadi El Daou, Taavi Salumäe, Lily D. Chambers, William M. Megill, and Maarja Kruusmaa. Modelling of a biologically inspired robotic fish driven by compliant parts. Bioinspiration & Biomimetics, 9(1):016010, January 2014. doi:10.1088/1748-3182/9/1/016010.

[R13]

K. M. Digumarti, A. T. Conn, and J. Rossiter. Euglenoid-Inspired Giant Shape Change for Highly Deformable Soft Robots. IEEE Robotics and Automation Letters, 2(4):2302–2307, October 2017. doi:10.1109/LRA.2017.2726113.

[R14]

Dylan Drotman, Saurabh Jadhav, David Sharp, Christian Chan, and Michael T. Tolley. Electronics-free pneumatic circuits for controlling soft-legged robots. Science Robotics, February 2021. doi:10.1126/scirobotics.aay2627.

[R15]

Hadi El Daou, Taavi Salumäe, Asko Ristolainen, Gert Toming, Madis Listak, and Maarja Kruusmaa. A bio-mimetic design and control of a fish-like robot using compliant structures. In 2011 15th International Conference on Advanced Robotics (ICAR), 563–568. June 2011. doi:10.1109/ICAR.2011.6088645.

[R16]

Mohammad Navid Golchin, Alireza Hadi, and Bahram Tarvirdizadeh. Development of A New Soft Robotic Module Using Compressed Air and Shape Memory Alloys. In 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM), 517–522. November 2021. doi:10.1109/ICRoM54204.2021.9663519.

[R17]

Benjamin Gorissen, David Melancon, Nikolaos Vasios, Mehdi Torbati, and Katia Bertoldi. Inflatable soft jumper inspired by shell snapping. Science Robotics, 5(42):eabb1967, May 2020. doi:10.1126/scirobotics.abb1967.

[R18]

Huaxia Guo, Jinhua Zhang, Tao Wang, Yuanjie Li, Jun Hong, and Yue Li. Design and control of an inchworm-inspired soft robot with omega-arching locomotion. In 2017 IEEE International Conference on Robotics and Automation (ICRA), 4154–4159. May 2017. doi:10.1109/ICRA.2017.7989477.

[R19] (1,2)

J. Guo, C. Xiang, T. Helps, M. Taghavi, and J. Rossiter. Electroactive textile actuators for wearable and soft robots. In 2018 IEEE International Conference on Soft Robotics (RoboSoft), 339–343. April 2018. doi:10.1109/ROBOSOFT.2018.8404942.

[R20]

Pilwon Heo, Gwang Min Gu, Soo-jin Lee, Kyehan Rhee, and Jung Kim. Current hand exoskeleton technologies for rehabilitation and assistive engineering. International Journal of Precision Engineering and Manufacturing, 13(5):807–824, May 2012. doi:10.1007/s12541-012-0107-2.

[R21]

J. Hiller and H. Lipson. Automatic Design and Manufacture of Soft Robots. IEEE Transactions on Robotics, 28(2):457–466, April 2012. doi:10.1109/TRO.2011.2172702.

[R22]

Ken Hinckley. So you're a program committee member now: On excellence in reviews and meta-reviews and championing submitted work that has merit. January 2015. URL: https://www.microsoft.com/en-us/research/publication/youre-program-committee-member-now-excellence-reviews-meta-reviews-championing-submitted-work-merit/.

[R23] (1,2)

Trung Thien Hoang, Luke Sy, Mattia Bussu, Mai Thanh Thai, Harrison Low, Phuoc Thien Phan, James Davies, Chi Cong Nguyen, Nigel H. Lovell, and Thanh Nho Do. A Wearable Soft Fabric Sleeve for Upper Limb Augmentation. Sensors, 21(22):7638, January 2021. doi:10.3390/s21227638.

[R24]

Hen-Wei Huang, Mahmut Selman Sakar, Andrew J. Petruska, Salvador Pané, and Bradley J. Nelson. Soft micromachines with programmable motility and morphology. Nature Communications, 7(1):12263, July 2016. doi:10.1038/ncomms12263.

[R25]

Filip Ilievski, Aaron D. Mazzeo, Robert F. Shepherd, Xin Chen, and George M. Whitesides. Soft Robotics for Chemists. Angewandte Chemie International Edition, 50(8):1890–1895, 2011. doi:10.1002/anie.201006464.

[R26] (1,2)

Trevor J. Jones, Etienne Jambon-Puillet, Joel Marthelot, and P.-T. Brun. Bubble casting soft robotics. Nature, 599(7884):229–233, November 2021. doi:10.1038/s41586-021-04029-6.

[R27]

Erina B. Joyee and Yayue Pan. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation. Soft Robotics, 6(3):333–345, June 2019. doi:10.1089/soro.2018.0082.

[R28]

Jonas Jørgensen, Kirsten Borup Bojesen, and Elizabeth Jochum. Is a Soft Robot More “Natural”? Exploring the Perception of Soft Robotics in Human–Robot Interaction. International Journal of Social Robotics, 14(1):95–113, January 2022. doi:10.1007/s12369-021-00761-1.

[R29]

Jonas Jørgensen and Mads Bering Christiansen. The Sounds of Softness. Designing Sound for Human-Soft Robot Interaction. Frontiers in Robotics and AI, 2021. URL: https://www.frontiersin.org/articles/10.3389/frobt.2021.674121 (visited on 2023-01-25).

[R30]

Manivannan Sivaperuman Kalairaj, Bok Seng Yeow, Chwee Ming Lim, and Hongliang Ren. Needle-Size Bending Actuators Based on Controlled Nitinol Curvatures and Elastic Structures. Journal of Mechanisms and Robotics, February 2020. doi:10.1115/1.4045646.

[R31]

Mahdi Khoramshahi, Guillaume Morel, and Nathanael Jarrassé. Intent-aware control in kinematically redundant systems: Towards collaborative wearable robots. In 2021 IEEE International Conference on Robotics and Automation (ICRA), 10453–10460. May 2021. doi:10.1109/ICRA48506.2021.9561351.

[R32] (1,2)

Sangbae Kim, Cecilia Laschi, and Barry Trimmer. Soft robotics: A bioinspired evolution in robotics. Trends in Biotechnology, 31(5):287–294, May 2013. doi:10.1016/j.tibtech.2013.03.002.

[R33]

Yeunhee Kim, Yeonseo Lee, and Youngsu Cha. Origami Pump Actuator Based Pneumatic Quadruped Robot (OPARO). IEEE access : practical innovations, open solutions, 9:41010–41018, 2021. doi:10.1109/ACCESS.2021.3065402.

[R34]

Cecilia Laschi, Barbara Mazzolai, and Matteo Cianchetti. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Science Robotics, 1(1):eaah3690, December 2016. doi:10.1126/scirobotics.aah3690.

[R35] (1,2)

Theresa Law, Bertram F. Malle, and Matthias Scheutz. A Touching Connection: How Observing Robotic Touch Can Affect Human Trust in a Robot. International Journal of Social Robotics, 13(8):2003–2019, December 2021. doi:10.1007/s12369-020-00729-7.

[R36] (1,2)

J. Lee and K. Cho. Development of magnet connection of modular units for soft robotics. In 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 65–67. June 2017. doi:10.1109/URAI.2017.7992886.

[R37]

J. Lee, J. Eom, W. Choi, and K. Cho. Soft LEGO: Bottom-Up Design Platform for Soft Robotics. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 7513–7520. October 2018. doi:10.1109/IROS.2018.8593546.

[R38]

J. Lee, W. Kim, W. Choi, and K. Cho. Soft Robotic Blocks: Introducing SoBL, a Fast-Build Modularized Design Block. IEEE Robotics Automation Magazine, 23(3):30–41, September 2016. doi:10.1109/MRA.2016.2580479.

[R39]

Shuo Li, Hedan Bai, Zheng Liu, Xinyue Zhang, Chuqi Huang, Lennard W. Wiesner, Meredith Silberstein, and Robert F. Shepherd. Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Science Advances, 7(30):eabg3677, July 2021. doi:10.1126/sciadv.abg3677.

[R40]

Yingqi Li, Xiaomei Wang, and Ka-Wai Kwok. Towards Adaptive Continuous Control of Soft Robotic Manipulator using Reinforcement Learning. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 7074–7081. October 2022. doi:10.1109/IROS47612.2022.9981335.

[R41]

Xiaocun Liao, Chao Zhou, Jian Wang, Junfeng Fan, and Zhuoliang Zhang. A Wire-driven Elastic Robotic Fish and its Design and CPG-Based Control. Journal of Intelligent & Robotic Systems, 107(1):4, December 2022. doi:10.1007/s10846-022-01797-9.

[R42]

Jamie Luong, Paul Glick, Aaron Ong, Maya S. deVries, Stuart Sandin, Elliot W. Hawkes, and Michael T. Tolley. Eversion and Retraction of a Soft Robot Towards the Exploration of Coral Reefs. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 801–807. April 2019. doi:10.1109/ROBOSOFT.2019.8722730.

[R43]

Andrew D. Marchese, Robert K. Katzschmann, and Daniela Rus. A Recipe for Soft Fluidic Elastomer Robots. Soft Robotics, 2(1):7–25, March 2015. doi:10.1089/soro.2014.0022.

[R44]

Andrew D. Marchese, Konrad Komorowski, Cagdas D. Onal, and Daniela Rus. Design and control of a soft and continuously deformable 2D robotic manipulation system. In 2014 IEEE International Conference on Robotics and Automation (ICRA), 2189–2196. May 2014. doi:10.1109/ICRA.2014.6907161.

[R45] (1,2,3)

Andrew D. Marchese, Cagdas D. Onal, and Daniela Rus. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. Soft Robotics, 1(1):75–87, February 2014. doi:10.1089/soro.2013.0009.

[R46]

Ramses V. Martinez, Carina R. Fish, Xin Chen, and George M. Whitesides. Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators. Advanced Functional Materials, 22(7):1376–1384, 2012. doi:10.1002/adfm.201102978.

[R47]

Haruka Mase, Yuya Yoshida, and Tomoko Yonezawa. An interactive stuffed-toy device for communicative description on Twitter. In 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), 1360–1363. December 2014. doi:10.1109/SCIS-ISIS.2014.7044832.

[R48] (1,2)

Yiğit Mengüç, Yong-Lae Park, Hao Pei, Daniel Vogt, Patrick M. Aubin, Ethan Winchell, Lowell Fluke, Leia Stirling, Robert J. Wood, and Conor J. Walsh. Wearable soft sensing suit for human gait measurement. The International Journal of Robotics Research, 33(14):1748–1764, December 2014. doi:10.1177/0278364914543793.

[R49]

Takashi Mineta, Toshiaki Mitsui, Yoshiyuki Watanabe, Seiya Kobayashi, Youichi Haga, and Masayoshi Esashi. An active guide wire with shape memory alloy bending actuator fabricated by room temperature process. Sensors and Actuators A: Physical, 97–98:632–637, April 2002. doi:10.1016/S0924-4247(02)00021-3.

[R50]

Aslan Miriyev, Kenneth Stack, and Hod Lipson. Soft material for soft actuators. Nature Communications, 8(1):596, September 2017. doi:10.1038/s41467-017-00685-3.

[R51]

Hila Mor, Tianyu Yu, Ken Nakagaki, Benjamin Harvey Miller, Yichen Jia, and Hiroshi Ishii. Venous Materials: Towards Interactive Fluidic Mechanisms. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–14. Honolulu HI USA, April 2020. ACM. doi:10.1145/3313831.3376129.

[R52]

Joseph T. Muth, Daniel M. Vogt, Ryan L. Truby, Yiğit Mengüç, David B. Kolesky, Robert J. Wood, and Jennifer A. Lewis. Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 26(36):6307–6312, 2014. doi:10.1002/adma.201400334.

[R53] (1,2)

Stefan Escaida Navarro, Steven Nagels, Hosam Alagi, Lisa-Marie Faller, Olivier Goury, Thor Morales-Bieze, Hubert Zangl, Björn Hein, Raf Ramakers, Wim Deferme, Gang Zheng, and Christian Duriez. A Model-Based Sensor Fusion Approach for Force and Shape Estimation in Soft Robotics. IEEE Robotics and Automation Letters, 5(4):5621–5628, October 2020. doi:10.1109/LRA.2020.3008120.

[R54] (1,2)

Cagdas D. Onal and Daniela Rus. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspiration & Biomimetics, 8(2):026003, March 2013. doi:10.1088/1748-3182/8/2/026003.

[R55]

Cagdas D. Onal, Robert J. Wood, and Daniela Rus. Towards printable robotics: Origami-inspired planar fabrication of three-dimensional mechanisms. In 2011 IEEE International Conference on Robotics and Automation, 4608–4613. May 2011. doi:10.1109/ICRA.2011.5980139.

[R56]

Pedro P., Ananda C., Rafael P.B., Carlos A.R., and Alexandre B.C. Closed structure soft robotic gripper. In 2018 IEEE International Conference on Soft Robotics (RoboSoft), 66–70. April 2018. doi:10.1109/ROBOSOFT.2018.8404898.

[R57]

Y. Park, B. Chen, and R. J. Wood. Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors. IEEE Sensors Journal, 12(8):2711–2718, August 2012. doi:10.1109/JSEN.2012.2200790.

[R58]

Panagiotis Polygerinos, Zheng Wang, Kevin C. Galloway, Robert J. Wood, and Conor J. Walsh. Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 73:135–143, November 2015. doi:10.1016/j.robot.2014.08.014.

[R59]

Dong Qin, Younan Xia, and George M. Whitesides. Soft lithography for micro- and nanoscale patterning. Nature Protocols, 5(3):491–502, March 2010. doi:10.1038/nprot.2009.234.

[R60]

S. M. Mizanoor Rahman. Bioinspired Dynamic Affect-Based Motion Control of a Humanoid Robot to Collaborate with Human in Manufacturing. In 2019 12th International Conference on Human System Interaction (HSI), 76–81. June 2019. doi:10.1109/HSI47298.2019.8942609.

[R61]

Jonathan Realmuto and Terence D. Sanger. Assisting Forearm Function in Children With Movement Disorders via A Soft Wearable Robot With Equilibrium-Point Control. Frontiers in Robotics and AI, 2022. URL: https://www.frontiersin.org/articles/10.3389/frobt.2022.877041 (visited on 2023-01-25).

[R62]

Daniela Rus and Michael T. Tolley. Design, fabrication and control of soft robots. Nature, 521(7553):467–475, May 2015. doi:10.1038/nature14543.

[R63] (1,2)

Frank Saunders, Barry A. Trimmer, and Jason Rife. Modeling locomotion of a soft-bodied arthropod using inverse dynamics. Bioinspiration & Biomimetics, 6(1):016001, December 2010. doi:10.1088/1748-3182/6/1/016001.

[R64]

Yingchun Shao, Fei Long, Zihui Zhao, Mingquan Fang, Huilan Jing, Jianjun Guo, Xiaolu Shi, Aihua Sun, Gaojie Xu, and Yuchuan Cheng. 4D printing Light-Driven soft actuators based on Liquid-Vapor phase transition composites with inherent sensing capability. Chemical Engineering Journal, 454:140271, February 2023. doi:10.1016/j.cej.2022.140271.

[R65]

Robert F. Shepherd, Filip Ilievski, Wonjae Choi, Stephen A. Morin, Adam A. Stokes, Aaron D. Mazzeo, Xin Chen, Michael Wang, and George M. Whitesides. Multigait soft robot. Proceedings of the National Academy of Sciences of the United States of America, 108(51):20400–20403, December 2011. doi:10.1073/pnas.1116564108.

[R66]

Afaque Manzoor Soomro, Jae-Wook Lee, Fida Hussain Memon, Faheem Ahmed, Kashif Hussain, and Kyung Hyun Choi. Bioinspired Multi-material Polyjet-printed Frog Robot for Synchronous and Asynchronous Swimming. Journal of Bionic Engineering, December 2022. doi:10.1007/s42235-022-00321-x.

[R67]

Bjorn Sparrman, Cosima du Pasquier, Charles Thomsen, Shokofeh Darbari, Rami Rustom, Jared Laucks, Kristina Shea, and Skylar Tibbits. Printed silicone pneumatic actuators for soft robotics. Additive Manufacturing, 40:101860, April 2021. doi:10.1016/j.addma.2021.101860.

[R68]

Yu-Chen Sun, Meysam Effati, Hani E. Naguib, and Goldie Nejat. SoftSAR: The New Softer Side of Socially Assistive Robots—Soft Robotics with Social Human–Robot Interaction Skills. Sensors (Basel, Switzerland), 23(1):432, December 2022. doi:10.3390/s23010432.

[R69]

Marc Teyssier, Gilles Bailly, Catherine Pelachaud, Eric Lecolinet, Andrew Conn, and Anne Roudaut. Skin-On Interfaces: A Bio-Driven Approach for Artificial Skin Design to Cover Interactive Devices. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, UIST '19, 307–322. New York, NY, USA, October 2019. Association for Computing Machinery. doi:10.1145/3332165.3347943.

[R70] (1,2)

M. T. Tolley, R. F. Shepherd, M. Karpelson, N. W. Bartlett, K. C. Galloway, M. Wehner, R. Nunes, G. M. Whitesides, and R. J. Wood. An untethered jumping soft robot. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 561–566. September 2014. doi:10.1109/IROS.2014.6942615.

[R71] (1,2)

Alessandro Ubaldi, Mirko Gelsomini, Marzia Degiorgi, Giulia Leonardi, Simone Penati, Noëlie Ramuzat, Jacopo Silvestri, and Franca Garzotto. Puffy, a Friendly Inflatable Social Robot. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, CHI EA '18, 1. New York, NY, USA, April 2018. Association for Computing Machinery. doi:10.1145/3170427.3186595.

[R72] (1,2)

Yoshiki Usui, Ryuma Niiyama, and Yasuo Kuniyoshi. Anthropomorphic Face Robot having Soft Mouth Mechanism with Embedded Artificial Facial Muscles. In 2019 International Symposium on Micro-NanoMechatronics and Human Science (MHS), 1–6. December 2019. doi:10.1109/MHS48134.2019.9249338.

[R73]

Jue Wang and Alex Chortos. Control Strategies for Soft Robot Systems. Advanced Intelligent Systems, 4(5):2100165, 2022. doi:10.1002/aisy.202100165.

[R74]

Naijia Wang, Mengqi He, Yushi Cui, Yi Sun, and Peng Qi. A Soft Pneumatic Crawling Robot with Unbalanced Inflation. In 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 138–143. July 2020. doi:10.1109/AIM43001.2020.9158925.

[R75]

Qi Wang, Zhenhua Wu, Jianyu Huang, Zhuolin Du, Yamei Yue, Dezhi Chen, Dong Li, and Bin Su. Integration of sensing and shape-deforming capabilities for a bioinspired soft robot. Composites Part B: Engineering, 223:109116, October 2021. doi:10.1016/j.compositesb.2021.109116.

[R76]

Yanjie Wang, Zhiwei Yang, Han Zhou, Chun Zhao, Benjamin Barimah, Bo Li, Chaoqun Xiang, Lijie Li, Xiaofan Gou, and Minzhou Luo. Inflatable Particle-Jammed Robotic Gripper Based on Integration of Positive Pressure and Partial Filling. Soft Robotics, 9(2):309–323, April 2022. doi:10.1089/soro.2020.0139.

[R77] (1,2)

Michael Wehner, Michael T. Tolley, Yiğit Mengüç, Yong-Lae Park, Annan Mozeika, Ye Ding, Cagdas Onal, Robert F. Shepherd, George M. Whitesides, and Robert J. Wood. Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics. Soft Robotics, 1(4):263–274, December 2014. doi:10.1089/soro.2014.0018.

[R78]

Michael Wehner, Ryan L. Truby, Daniel J. Fitzgerald, Bobak Mosadegh, George M. Whitesides, Jennifer A. Lewis, and Robert J. Wood. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 536(7617):451–455, August 2016. doi:10.1038/nature19100.

[R79]

Younan Xia and George M. Whitesides. Soft Lithography. Angewandte Chemie International Edition, 37(5):550–575, 1998. doi:10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.

[R80]

Fengran Xie, Qiyang Zuo, Qinglong Chen, Haitao Fang, Kai He, Ruxu Du, Yong Zhong, and Zheng Li. Designs of the Biomimetic Robotic Fishes Performing Body and/or Caudal Fin (BCF) Swimming Locomotion: A Review. Journal of Intelligent & Robotic Systems, 102(1):13, April 2021. doi:10.1007/s10846-021-01379-1.

[R81]

Fan Xu and Hesheng Wang. Soft Robotics: Morphology and Morphology-inspired Motion Strategy. IEEE/CAA Journal of Automatica Sinica, 8(9):1500–1522, September 2021. doi:10.1109/JAS.2021.1004105.

[R82]

Yao Xu, Ting Wang, and Zhidong Wang. A soft actuator with integrated pneumatic source using electrically induced liquid-to-gas conversion. In 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO), 249–254. December 2021. doi:10.1109/ROBIO54168.2021.9739313.

[R83]

Lining Yao, Ryuma Niiyama, Jifei Ou, Sean Follmer, Clark Della Silva, and Hiroshi Ishii. PneUI: Pneumatically actuated soft composite materials for shape changing interfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST '13, 13–22. New York, NY, USA, October 2013. Association for Computing Machinery. doi:10.1145/2501988.2502037.

[R84]

Lining Yao, Jifei Ou, Guanyun Wang, Chin-Yi Cheng, Wen Wang, Helene Steiner, and Hiroshi Ishii. bioPrint: A Liquid Deposition Printing System for Natural Actuators. 3D Printing and Additive Manufacturing, 2(4):168–179, December 2015. doi:10.1089/3dp.2015.0033.

[R85]

Yoram Yekutieli, Roni Sagiv-Zohar, Ranit Aharonov, Yaakov Engel, Binyamin Hochner, and Tamar Flash. Dynamic Model of the Octopus Arm. I. Biomechanics of the Octopus Reaching Movement. Journal of Neurophysiology, 94(2):1443–1458, August 2005. doi:10.1152/jn.00684.2004.

[R86]

Juan Yi, Xiaojiao Chen, Chaoyang Song, Jianshu Zhou, Yujia Liu, Sicong Liu, and Zheng Wang. Customizable Three-Dimensional-Printed Origami Soft Robotic Joint With Effective Behavior Shaping for Safe Interactions. IEEE Transactions on Robotics, 35(1):114–123, February 2019. doi:10.1109/TRO.2018.2871440.

[R87] (1,2)

K. Zhang, Y. Zhu, C. Lou, P. Zheng, and M. Kovač. A Design and Fabrication Approach for Pneumatic Soft Robotic Arms Using 3D Printed Origami Skeletons. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 821–827. April 2019. doi:10.1109/ROBOSOFT.2019.8722719.

[R88] (1,2)

T. S. Zhang, A. Kim, M. Ochoa, and B. Ziaie. Controllable `Somersault' magnetic soft robotics. In 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 1044–1047. January 2015. doi:10.1109/MEMSYS.2015.7051141.

[R89]

Yifan Zhang, Lisen Ge, Jiang Zou, Haipeng Xu, and Guoying Gu. A Multimodal Soft Crawling-Climbing Robot with the Controllable Horizontal Plane to Slope Transition. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3343–3348. November 2019. doi:10.1109/IROS40897.2019.8968297.

[R90]

Dong Zhou, Yuan Fu, Jie Deng, Jin Sun, and Yingxiang Liu. A Bistable Jumping Robot with Pure Soft Body Actuated by Twisted Artificial Muscle. In 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 388–393. November 2021. doi:10.1109/M2VIP49856.2021.9665013.

[R91]

Mengjia Zhu, Shantonu Biswas, Stejara Iulia Dinulescu, Nikolas Kastor, Elliot Wright Hawkes, and Yon Visell. Soft, Wearable Robotics and Haptics: Technologies, Trends, and Emerging Applications. Proceedings of the IEEE, 110(2):246–272, February 2022. doi:10.1109/JPROC.2021.3140049.

[R92] (1,2)

JiaKang Zou, MengKe Yang, and GuoQing Jin. A five-way directional soft valve with a case study: A starfish like soft robot. In 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), 130–134. September 2020. doi:10.1109/CACRE50138.2020.9230177.

[R93]

Pascal Auf der Maur, Betim Djambazi, Yves Haberthür, Patricia Hörmann, Alexander Kübler, Michael Lustenberger, Samuel Sigrist, Oda Vigen, Julian Förster, Florian Achermann, Elias Hampp, Robert K. Katzschmann, and Roland Siegwart. RoBoa: Construction and Evaluation of a Steerable Vine Robot for Search and Rescue Applications. In 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), 15–20. April 2021. doi:10.1109/RoboSoft51838.2021.9479192.

[R94]

Cosima du Pasquier, Tian Chen, Skylar Tibbits, and Kristina Shea. Design and Computational Modeling of a 3D Printed Pneumatic Toolkit for Soft Robotics. Soft Robotics, 6(5):657–663, June 2019. doi:10.1089/soro.2018.0095.

[R95]

Purnendu, Eric Acome, Christoph Keplinger, Mark D Gross, Carson Bruns, and Daniel Leithinger. Soft Electrohydraulic Actuators for Origami Inspired Shape-Changing Interfaces. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, CHI EA '21, 1–6. New York, NY, USA, May 2021. Association for Computing Machinery. doi:10.1145/3411763.3451590.