Author Archives: aluthra@andrew.cmu.edu

Project 2: Rave Visuals Continued – Arnav Luthra

For this project, I continued my work on the first project and added a tap for bpm and pose recognition using machine learning and the leap motion controller.

I kept the same overall layout with a video feed being stripped into separate RGB colorplanes and then moving them against each other but instead of having a single looping video I created a playlist of videos which can be switched by making a fist. I also altered the playback speed of the video using the position of the right palm over the sensor.

Instead of using the problematic beat detection object from the first version, I instead built a simple tap for bpm. I did this through a timer and some zl functions.

If I were to continue this further I would look into more interesting parameters to tweak as well as finding some ways to add some more visual diversity.

Patch:

<pre><code>
----------begin_max5_patcher----------
14386.3oc68s0iiibrlO28uBBg4I6ZTm23syCKZa3EGuX2Y8AqOmE6BiEEXI
wpJNMknLEU0cOFG+aeyKjT7ZdQhjhpZZOcUpDoDi7KxLxHiLxu3e7wOr5oju
Edbk0+h0ey5Ce3e7wO7A9awdiOj+2eX0tfusIN3H+1VsIY2tv8YqdPbsrvuk
we++8zfMew5Pbv2i1+RwUODjs4U5e+XZ3lLwSg3gWCdvBaiWa+fEzFv9KD8m
V++J9PogGoOgfrnj8rOCL+8i1xePIO8q+LAU7D1eZWz93vriUuS5albJq3cA
4u6wruGGx+JV0wSphHBI1qcbbbIdL4zlImHGzY4j8g+O+3GY+3gqE0BNX8G+
29kwFuP9iIdQHDNFY6zRDu.nZe3WohbKj52hshC2KCnbcW6Re9XDjCX9bo.U
Anp.H1fNADTm.BpW.QbSYe+PnPFnWf9ugrY+IYsXaNtic38PP9bkPOMXhiAM
Xn9M3HZm5AVMe7zNYMZn6ZzY0LcnpD0LgbmnloM6WRSNcvBKqoiw7d3HZOcZ
iNWs2WSGdmzzSsdJLHSRy1AQXMTnMuUSfxZ0nta0fqsa9.2hieRR6Ea6wahP
QK0UV6E5cGzd2ElklXAznI64v9ksTULDONVxdJf52xE0rYN8DGcL6eJoERGx
V3RAD4H5OymmDa3T4PnASkaqey+XzK6ChYit65Ur+sMZCStBR+9pNE397fxW
nNEdPgsqzb2FjEjiq4.6GVsIN5PoCoUt.8ROGQ8.HXmng7KAany8jb7Uq+7e
5e4S+GGCSO9ofz8AuE+oe4zwnMeZ6ud70nrOArs9kjDpHF+k06NTz2o3q6KQ
6EPavosQIr2oxMDmjbnxnItzQ+lns2GORaxgEhdUg7C7dCB4urgJd+HZmhMI
oLTJW814sPk5mKfw00udRZzKQTMRV3tCI42RUWAE553SoYQ6x0qMuJ6JGyRC
oOntjfhm.EneI60cG69K44jzcA66QH+6mBhix9d4nJptXUsaXWx1v9uZcIn7
4S6+kEs4KGW0PPhiS95KwIOUCTZ.HGBC21srl2PjqU3BY1o8r00j6uatmsen
vVg3E4uo3cFFSmGnN8Fb3WRXx1eM6zyOKwDiumXdRONbAADoVQMXdCIKHfIE
goMGCyFG8Fc.YcqXeXUvgCUd6ZCbnnwulv+hben7sh1KdKb4akF9VTwmmT9t
AoTrHiBDmREx227bVc9qg1eKc+oHtn7wbcUgHUw6JegYYWt4JGBGEIdU66u5
IZWsMeQzapvpvpjCgz9FMMcWd4sgOGbJN6wmolNNF8abADxrE1w0eNXSXue3
RSe+gzHlU47a4kznsI6YBQMrl81EONZGeawTNUaL76XevgN9vzdHTbomKxr8
c53SAoLUwShdDnhKlkjDW+Rket3vmyxu7gn86afhYIG5+hTaBuJ4y9TB8h6j
8cyuxwGOsWb0Goi6nFwCdqNZSmjHNefX8u9uErOZG0hegcUDn7hzYjnMzWOt
IkZKpV6Ubk253Jao8h2D90nsBCbfpcFn2dzghNQqJ0xaidgZ2t96kE7xw5uS
qQnz25zS4iRejYgLNedqy2PsH.UeB2ylrZLGW+ltpa95n0qA629WJMaI5GDs
ObSxIw7G3pS+0gu+P5Rd..fKlsNWtEMrXce9MLkWw1la0mVWdI0uMtlnXGV4
eXzfo8qjCF1XRSvn8Z.aEoiYIXPcB4XvKgchFPEv.wwW3IIp6vdzZpt9g.Tu
P.raHnpiJ8rloop6xeNjYTTEVIVzL1mCYdPU8Vfn6uwNLOj9iAkAct20XJFp
XyQBWkHg+8oQDs5U3v8Fffc0qSg2rDJdNNYeYjBO6MOuI5Hu8CsE.fsHbC.U
.fSc7Lk5HVFc9TwD7MasZBPnKv.yC0hRw.giGiin9GW8AW5kJ3rmI8fjHWwt
SfKi4O0KSBPhAF3HfkyZi0aBhColcn81.TO8rsvqUL5DJBwIAHVOBDoznMn2
AnN2kXF0Mc1lIBVK9OU3k.nx8HxyWIbcAlyvliVT6SrvZ25ESEHlZkdHHdml
fmnWFwSE3g6E7.2o9RwWa4Oyl67mosSE9P.8q3DQ9LmPISbXWe9o9VD+0OwZ
iGSoIbpvMc9g8rt3HRDNbGjCKn+bXzknDLI+v.lG39xcr501jDKBFFKbndHO
WOuGnuBh8cAhWQbsgrsWnAB10fdewtlhEyvPTtHRG7..8rV2E2Jd5kJeTdGl
Z+n18VWGSLSGip4xS2a+4CkaCZSb9brPqq46Mln8EWzFe7thOZOwHs+3jpNV
o8EuzZwLsQbSw7Att9hfNK1tRGabccR2gNUivm1eHTgq68dZFFUMCkpjvopW
HUUDVUkgVUY3UUDhU0gYUYnV0Hbq5DxUSB6pjPupL7qxCAq7vvJOTrRCGaeg
js6vx1uoG0gms6Pz1z5PyobZccUS8zxonFtN1aHIcEdL5y+Ewsq4vktDPoSY
HeF69hsPsomqOE8HiaoTAMzhAcGRNFw60nADJRjIjHblh0bqFCQRwPjTLD0O
F13Jxx9maKTSc2TytnDrvYGeRk7ESE7BV5hVcYO4ixEKOTytn3268PqmSuc.
0rYQ4Nxa8e6OoSGUBVjNmtmWODzWNH6z76Ut2MCWO4NdrcsLoaH7y7Cx.zGC
qFEIw9CnB8cWPe0c90.6gB6KE6oIRGr2dA6U1yWCnmZrwtD4sw5f7jebQdgb
pisbPkNzH6heJ0miIAzJ56z00h1uM7aMV0+sGJg1DiwRz7AKQ2de9xrhsh0t
SqC+mhDFPkOdDuQ0V.5hsEb2rNFg+3PKj15GjH8WP5sXaz0NOIVpFBOtZn4h
V5PZ3gPpmjGyRRC0YM81hT6W3KomVCk.i5PI33ontGUPv7bHyDMD1eQCc4Zn
MIwwU1qUCzQh323oWPGF2kjQFeycM2WIwyI3svsOJ15fGCxxRidhNswwFZmF
pmOrJb2S4gku1Ep0A3V1cnbGi02jpnyfHqiTFEukNCyjNCbHUaObf156oui7
H0BFHStcYS8tekUHwIyynUV4LiVlJddsheXkHonIXNiVmJYFLm.cpfWB0Oj.
HLR+ccDOtgJebWHDikEdnJYKbmnnPNdlqnrWTTCWjeP5G9cnSdVgokVBemtX
n4ipApukNyTMnEUyUoZdIHKTuAN4yCAPbhOBqm5AdkpGzO5wL8XnXoihvIXv
nn7.bqWfSctSCbJ+DB8v4eOiByMWJ0WcI1Qdas1IBDYYT00ohXLuUbzlP8lW
RbTu77NuswJ0P32sZn5I.L67sqHaM4HJ69jq9NlbJcSgXTDsCq1n71viYQ6C
NSfIkaNmE3B6ZcoRXwCUKIjs4T2FIDpqDhuERnIZYVPNmbIjsUHZKg3ahD5X
fDxBpUG2bR5Vw44.LeEc9PHX+hNbZEcaSPczrB0sME0QyFTGaxnQ3sXzHZ1K
gPSjPmakDp67V3awLqlzMDBtABHaMc5Cg3akDpc2PzsPBMwNYOdxbirS1ybk
8.t9yNQW69Eyo4UMBzU3Q.Z9J4PzrCz01T7rBzIl3F1sXdXjwdaAuERn1C4H
2.LDZh+fP09CV4hUOl55jpL+iq839J6PoKXl17C3aYntz4bAe9PD+w1s4Af7
In3PVhJBGrF6KB4mNMAWry9YuzqCd0jvfSCOSXoElX6VESbzDS7tWwDIjThH
K.r.p.La6R.iQWXT.ywQEgiflHRZp28r+FywktN7hbADHNKbdcyMNurOg9Qh
i17kl.S0CJmyExcKn94tEiHfEnwjriBlgpxkeIMXaTdtMA6itX.q8A9d.Bie
YHHrMx+AAkh2CIyfL9i8bTbL+i9XgjdVx54F4+DdEOoqVTqgPHe.z2g8ovke
SX1aAk+kPMAjSQIt0IKvp2zgzjCIokT6xZreeeamxRppRACJgK09bSdd.4yL
hHzJZ+yIpXTUf+ZfuuuqyYtBuyCKbMxD8cF0UICIYGCCNZpx4BQRS3UbnyrU
.gN+.w9WuEc7T+j+EaroG1GA4iWcyGupAuekyzoBt9yUIQI56dgPNdnfbTa9
G8GPF1BJpDPd147ApqXS2QKTr0BEasPwVJWJ8LkhsXm6oF9azaZT6INaAh0A
3.0Jca7euRgQE0JOc.Nje05JF3xNwzu2Htn1KLsQ9uJ7FWP9xDByGCB08hGr
1k7VXVh0OAs9Ij0OQWO+wCzQUgrgz3yWkX8S1V+jSsq17YUqFfPzPQBD7ThP
EBEmBPVQiSplDMpYb167CrKcX1ulDoEC1kelmvdUJ7ppFksjEzSl9gjGuMSz
OW8YmEsvrGrTd9qoQGyJnZOqv3mR9Z4eIiE9L0.Y9Xv77xUr1NU1GgWaJtSl
GmO5ezz04imMSWaunq0TWqjZ63Ja1Z.+zYVt6nNbslWE1FAB0hfGgfebYaMU
C55szMzqB3bMnsL9WFSVwFh+fej8gLsuhBghowx0PnKiJjWzPiD+iIl2ofsj
ziIkwK7OlFZIsIHEgJ.a.Co.I2ULjB5ddFdLv03Y3cVlfevlfGI1iDSlfmrL
6wDN+Nzy0z42wKJnoY5cQkyynY2QKSte85HcomWg9IeU+Xd1SnR+XuPOuCz3
GKrEwxVesjv1lmiNZoqMTqNR0RNSSnYlUz0q0yTkRX5iQZ40FLm+VD7SkdbK
43xEr1SmNqUirirros5PZ11HKia53qpuLuQR12HOCbzKKbjkINsxFmFYjiXk
WB9ok3y61PXrURSvr+bxQy7xQ2byQq7ywfbzQQd5net5nQ95nUN6nUd6nQt6
nW96nUN7nYd7nat7XZ97nHmdzJudTmaOpyuG043ix77QVt9ze99H2xnd48S+
49SWFp5ZZpNuOcHQzdig.VbPabUPjnJiCpxIcTGt.EPbyf5P6x9ku20MUFcG
6lWqN8C2xIgalV.45bYZA3MWKjFwH9KIJAxciR.5eYJAvMWIrKZ613PopA7M
TMzoCz0chtSRdUkQKAC6Ibjtq.epxMZ8bk9RTmXiUmJb25CFyAr2453BShlp
i8Vzw2O53bKtlpicWzw2RcbVqPS0qBF4t1kEri7vbf0UC6LYZX3jnguOTqDM
UqPemKSsZunVuApUrtpUmKTsRVTq2v0s.cfWz5Vv27ksHVbhrUsflkJgWi5N
uR5Oj+BkhoZnaeLVxd8ztmjpgfui7GsPOYp+nXmEGRueTx4lKMVIaunjus9w
fzUCisuL+Xv3EGYtA5UnYlmMWshVTqStZkWVarMbhWHPXZ1SaUKbfTsHkpV6
IynrjLbY9omYkGGtWhVbWBsDaEgEaagr5cG5jL3VTVixGiqSW.zP47kixt.N
SRWflkTm998ruqQukgGU8A.9mKEOZ0EfLYVAPSmUf4t5s2R3SepWA+k4AOWE
ezR4hWTtCrxsqy+ibkVdwlS6HWPTmXBfQvYJ0GKnVQ33pCtQ6DPqyRxT25u9
nz3dzhsn13NoM9hLfRBwgOHc9tVg2yTgGNiDdWSEdvLR3cLT3wyIj29dV3IP
Ck9tpIX2No+dF5wl1qeNYqDabu94jviuq62ftqkdlvPLP58maBO1.g2atI7H
CDd24lvaTmdm4lzCMQ5smQROuPyXxPVm4lvaxP1YGxaxPVxbS3MpSOdtI8FY
vYN4dFxTOiQypwrWj+Yv4jzaR+dj9iZabSMOkl5Txm5nYbcGOMUGLS0kAJEQ
RqqxAUa741bXqeK7aGRs9omgV+N149Cn+gjmURo3at.rqJQPy.X5OtG45KjH
PPyEh.QMoNyFPyOglVj0OXcljmcK+Giim4gJM7EVzXKI54RNc9ZYtxb8dNKN
Kz6pXtRexBKNeMjKB6zkmY8jUXZvwPcFahAm4AFOs3ZdBZTGZNd7.CGaptCt
BPZVQ4a45CSn7sV60y7lx2vyBxzVryoNZO6UQQEPK5BA4sPm1eX.XhmcgYAa
BRODDacHM4aQ6nuHZeVX5tvsQr7aZazwr.8YSobNQGg0qzPbsL0i87g0Wte3
8pbNiyHhuBAVX9pOLwLeUgdxDpuB5uv8UCL4k9B0aOA8WYoG8WkWTVyo+JMY
sTuEVKcXHeLD.XL4iQHKrO1B6isv9XKrO1B6i8gE1Gag8wVXerE1Ga3UBKrO
1B6isb9gWXerEc7ToiWXerE1GqSM7B6icKTqKrO1B6isv9XKrO1B6isv9XKr
O1B6isv9XKrO1LxOlE1Gag8wVXerE1Gag8wlQ54E1Gag8w5oqwB6i8gE1Gag
8wVXerNUGKrO1B6isv9XKrOlwB+B6ic6j9E1Gag8wt.geg8wtcR+B6isv9XW
nvuv9XKrO1EI7KrO1B6icIR+B6isv9XWlzuv9XkW+9l8wzllb7MkkbtuHIGn
Drt12X2gartJnugXMTDsCuXmwWruENzoMvUIoaEmuazE06YRDcjsbQGLiEcj
bQGNshtARta64PlD4CZf7gtAxGx.4CeCjOrAxG4FHeDCjO6IV9bMYjcGwCXR
DP3bW.QycADO2EPxbV.sMnOn+MR9LYRtoV9HDCDPn+MXZXtDBMQBQ2BIDYhD
huERH1DIjbKjPhIR3TOcLiHa0e5N6awXYnAikInagDZhKM2fQxXCkuo1VHxy
j0XeKluCYjWqd2JIDN6kPzrWBwyZIzDGuP2jQJvY+HEfAiTHjakDZj2qStDZ
f.ZeijOsMFBtABHzetGFDn+bONHP+4dfPf9y8Hg.8m6gBAN6c8B5XhDBuURH
zDIbpWB.zDGaf2j9glDSN3sXmcfFEzK7s.CwlfgN2JITaL7V3ZCDYpVdx6GB
MUBm5.h.MLfHx0wUtX0riQmLiohfJMiX5KaXjkILZjEL8jDGck8Kmayku5rl
orYzHSWN27ZbzJOs6ovzJOxtRuEaa60t..vEypTdhZyUm0rlZ7aZUxuT9Qjj
9LSoWKKL8QAea2HGX5k3C5+HS1MdJQI08Qije7lO2qZp.bh6k.39K.9kB3X+
K.vg.vBh2Ah2tHwb9bZSaMuFruVwIQoEGAsHIzGMOj100GP80GZh2.iw6IBH
YU0fiYA6NXhoD8QRzONH4yrAlVzVuAlHzGHwuu.xVTwvYb7z9CAa9B0CM5+2
DrDjSxJTXj9+bfpL5RFbDEOnFUqPiYsXyrAPCjk7xK0nW+NselWjaEygU9y9
AU6QXtJnRXUAYRMt8W+6zlXZBEjr9bvlrn2pycHRPUTdsJCo1AAmKruJ5J.0
dpARF0GdDbCqeEQbXvgcI7UaU4x7JDsPbnvNF3RnFK.qcrAHB5Ad09Ff8cnJ
hFJf9UbE77BQPrWxTbtCfQFVC7haEO8RkOJm1Sp8iZ2auDCkNVyHpcQTBOfU
omQoH09P.btyRWwInRWl14PaqDRPyn4JsKqoRgCt4tGz2gezdrkBjNRAYDkB
rlJjwTefZcjZ6SH7FaoPG8QyH7NnRAT2QHiYWy1aZflb9yvJE512r0FY0woq
41HYc.jsO8LCqnAb0rareaX60nsayqXginvg0U3f8IbSMbZqqDilovoCdxGh
.ZcV.5k8pFy423Nsq0XU+oenpthl.LmX8m1yA.bFU8GQSmCZl+pifXnkYUuQ
WLzSq.FU4PSwvq+9snaqj4L8C20U0Am7A655+c+8oNubQ9hT6Y8hkK69qrRZ
s0tj8IGOvBtQ4itnrN2sjWe82PGfuOeU2PnmMTr9aL1lzdM0kKd+wn8rp4cX
4WxCU9Q6Us+bTbb4CsqMWtXs0qdIMXaT8fR2PdQ9.HK1.f0XfuGfHdE8sfsd
x4eRnNwKH+dQEOFOGjKwl8k64Br87Duxif65wDr+k7pOsa8Rc7pCoIGRRKKk
2qw909bmxRJaw0NE601o9pgZg1G5WR1GrIYU+QFAr1200F5m2Ro+ouM1A2Vy
DFGx1AfZeTWOLTDEFWeOGL+UdDHB4l+4+XaQjEbT52SWAVY0NZ2vnpMtxLRn
3KPUlHj2Qo2LPnqrOPQ1EzQLfZlUAhQk7eJLNvEiJA1SHVRBn24f4cvZW7eM
6zyOWbkNoVa.ODpHG9NsZy+IBcViUu3NWDD0N4Hit2bj1M5U43SSjlNdMjM9
NGoKVovpfCGp710FESwgeUzIx8gx2JZu3sJ2KgUogrBwt3ySJe2fzMLKYaxN
kJjuu4cNHwq1kPMau+TTkIUJ66spR7LEHlHrlN4EOFupA3mNJINYyWpWq0Ww
Ju7Q6OjFdj1EtzVc4kysj9Xs3ChV240aFg4ZWr6fkRs3EsscMtm+1EONZmCA
sqWk+TD2w9fCc7gECk54hGoMxSGeJHkoIx2HCT4f.QAmuxkJ+bwgO2eksm9A
Oz+ESid4UIe1mRnWbmrua9UN93o8hq9Hc.W1iLyF0uuf337Qf0+56up22e0t
u+pbe+U2dyLQ0pJ12kUIUUs91Uq9AbSHNZsK3veLnV8Cu6stTT2zb3+RPH4U
Mc0x7Ed31h2Ab6X1Ed7XPsxTUkRkPXvVqO8ebjZ96SAzITdK9S+ojMmXSed7
SzuEgRh9x3+TPVvmRo8M+WoZbpAsiq2ReGUHHTvh6BqWXOhRHDMJ6SVWjizz
rgWrxTBCjU.THf.ZvnyEo.o3D3BvIj43TG07iwEu178Mwg0pbncBWdUGYR7T
AWNiRlBz+FnMUnUpU7SZBUHGQofTETY2KTAluC.GKSbLezhU.vPONxhA7dgX
ekicI2kl3zI0Jg9Bm7E8xDF8kgDd2jrlbpRFUIF4ZV2Hk.lDWjdfId5rwMV4
6jTe1NjbTEjIFIZKpPe1HkShBmk9qIAENjFUOyF6xfOhavGKpjYDGkF7A2an
vlj8Omjti11e05H8C7p0SIIpfEWly7NXDKzOPWGQdHBT6mk2pgxFzW2g.Paf
MBDn0HrIKQs+uP+eljNbXe0IYn+rrSEqI+zI5xx2qp8JlFOOqJg1NJy+OHXD
lLSs84RkHKfHVrkjY86sZ41RudpN7orptHbswifl4vZ+vL71By7nybSPVYSN
xhzbTPbxKl.5DQYwS8ZxkrnbSwTSrAN4tkcHMjNHZq0WSixBM.IQPQVBmWLY
kBkWhWZvqCJmr4QD2kBWzPBuRvUV3tzw6jAahjp.1Tuxn7lc9BizXHm8jszH
SFRNsCGsxRCh1SAxedWvgCQJiWqv8+hb1mn14NnyfErCCFM1rQD169G2yFV0
2lV07PX2wlW0yFX0+lXodir5ayrZteuU2TKDlqb7xOZUhks4zrnr14Faowla
oyFbobSt5eitx2n5ZG56N2sK81wKE65kxc9R4teoXGvTuKXJ2ILM1MLc1QLS
1ULI6LlxcGS9NjIeWxjuSYWNkBzZWyzx9h5MRq6MSqMoNXVwxnc7Vqa5FpQg
zvtnNa6yOhNhehUTJMPRqkFnQrVZLAkfjNq80UC1e6ssTE3B4dX4JbLEOWqS
IyArkcT0i1+bhNk.FAqAfDmJPgqcJAWx6Yzs8pBZtKn6yrxRr1EuNN5IMfXe
rCyd.aG387o+ORuGBSY6ofTmikutglleajRhS.lxyvriwQaqs3BgbU5OiiF8
VcDNB6YysvJRGKnGPNLhZqjjtFD0PMC3X9vqTKfzVKnry+CykA.1qYFu0wvs
qiXhPH6W115zkG5+doOuJXjr1RCLD6Kx5DHlggN9Zggd+3fgZ.gj7PwR738F
0qanyOJPHVqtgEXnXnLVqYupEev20XHxjtgPWC5FB9QABgl.gzeoMD5+Cz.Y
qWXzAR32BnKdN7nUxyV7ON8kL1ogNt8Aq0q0CnEdV4vWIKNOs2Ufzt+3LbWD
MWc.x7ztUX2zknCNZ+iyXds7.RvCPF4AD4cyBmTDbpMwgAoZAhh0fR3VNy2q
JEKymLNAnx3E9LGhoR9927yGRC2FsQmZqKQj4VXeDCwg4jYkBHGKerOd5f7t
Zf02bm1HpzM4Q1F8zwWUea3ijM8Q9F+n2l+HaCfZsIPM1HHr3nUvMP4JxUMG
6Npmx8uWPZteP5tmPZsuPlr2PJ1eH82iHM1mHs1qHs1uHM1yH812Hs16HM2+
Hc2CIS2GIE6kjV6mj58TR89JodukTt+Rx1io92mI81qIs2uo92yotLZ00rNc
de5L6S8Yf98Vvttd+42nHDy3dmpW0VlnbFe0SAout3CpYUwNc.nsS.SrZoHO
qZGQzdyo47zXVrqVhv6oi9A4nTAAmXEzsU67xwuFQQWjt3t3TCkmXlh79Eiz
.2Ic+.TtEB5M.JRvq.pUcngU08vsV8owfqLqmrhzT85HnLBwFDkenC0YTEb.
FUMrplhyo38j4uigYFM6DBgLz5GXw52EpbzTw.ySkSw7RNHs8aveQyboCaB1
Zn1IOXX5Oto0dAtncTpc9M1wb+EcULhylFBJNnd1ZqXbF.+seu4S.usazD94
YFscwOUA6X0y2Cl9wCcbaEAOuqEjJ7aba325HBUyV8Ut+2FqvPyNElvwrqQm
gtWzYB2oMVmgeuMHCeCUXh1htSG4y0R1tNFpxHCfeBfqQkMnF7ZGs4Vj6e+p
o9JJf8nrZS07cVBHKh2YWEA.R6hr3E2I6pkdzkH8f4hzCMT5gyHgG4XnvimS
POhzUsYUVGGm4lzaTGGmYzf11UVBUXOXNg8vKA6mMROvTo2eFI8PeSkdu4jz
6cOawD5bW2ywT+Dzep11tu0lrs6ugcl7sk4wYGDvsjVeMBXF544wYcYjmGLm
eqsg3tHd5pAWxXd4tRBizI+b2u7pfut6tYYBucW+anJ+cy3xZeeWRwq7U9oO
yn2PrKfSu4dHWGL+qviB1HeIeE8xr2m6nKiguO+8zKSe2ax+7AsX96JZw5L.
NscIJqZ9td11thWgPPT+cDB1roIaf6YCA9BJ.GgHhWgA.hjuktIUbfOTf3..
BJXScBF530fTwkfFRHY7yKssIYiWcT+Gk8.zobn2wngqKGSTWBzMHgS5npn2
1.3HkfiLRh7jAYrrCOikKnwHE4sHxdvOhc8x.OMwaCyswb99KOV2Mt6f33ju
tMM3ktDW5yYW9LPqxy+aqUOv9AK4OljrTkYdhZjJ4zA8y.07SKg3zSCcPJNw
ItirlbLyRUlFp3F.8cNSadg2BhO0UBARMKbj0d2lag7g9+uIQ2qJUv08HIjS
lhFkJ3N+.kI3cFt0NAROxZniiim6C7xUtsr3s1KWcZ53GvkBmRhuZOwVsA.W
mkW5Ldp0w89VfQCzucACsqEVnnFBcQcLtTAjfl6RH1dtKgHSjPdyANwRHz0T
IbpwPHwTID05laWLvlehd2C2ZWqvlFI2jA+naR2BSF6iTJf0s62cfXpK3kqS
Z22ESOUST5IvK+iONLALQVvRZtzPkAI45BPRsfiX7J0qEbDEkFM0QBQcTPTD
AjVKGWuHezQEgu2HD8w9ebJBsP2gUP1fqx9nhDB6+aHaoeMODD50Usqfxfrg
7.535A8DErOaeaV0pqqdrUOCW+M9o3x1G.7tQ.hT+H0CQthnk99afuQQE8Ji
H58fM.ii740G0yqOhmS2nu9he3xHukQdKi7tzQdU9NqU3V0XOE9GWKenpdOD
zfbT6XuCN6m9LrFkTT0ID7hrNkmjZgd9Nt7jHAIYmgcQwMvRmxwUAFZmSF3N
pwvaSIdY34RcpsvWhUU3BPXQmqhM5PMC76OBTQ+0Qh5Cd2OY0ON5rPOcz5mf
ZhqhSyRNk6HsRWBFr5.2soTPHsZcc7scZwV+HnlkvQHBN6qDDWGfTqjhHJW1
5.Kn6XXIUm9IhSUom18Sv2hh5vzVgZznhxlOOXdsowWCbibmWZZjfa6hWqaG
MLBV4PIJEvruI9MzMnct.p2ZSFOiicEb7Jno5MUrm.h2H+PkpKuDY.ogL.wi
rP.0QHPinPXqo1vYDkAhlx.r4l3LnRAVSonUhN2wN2cSDLaP+RF3lJYPX+RF
ZTjLQWE3rD0fHaswswrCu9XDDL084gH8MJfFULBOKLNAae1V5UNfipbLOfi1
GVldkCvnJGdZOT1cTkCWswCxnJGNyitoPcMwhGUo.OOLho+nVf2nJGPsGsLt
3g1FSgiJd.z25wn1OEb0KBH+MK1QGU6lStzz6t3z0N3nX2a5n9U0bqZDxK+m
BXiKFUBDfPrpG.fZ0c5NytebUlfhT7yB3bUSBDNeY7cUWj5b89cGbj1M2d3u
tNkiphOwsnRNwKvom+kPmZHbUKdIUhIW3lvn2B+mVAm1FkHAMEA71Qj+1dsB
3cMZQGLNv1wnW1GDuZHa9+ZT1521jZAQd.KeGfD..5xipli3W9HYH.1qSD.2
IBfzGAnh6i6BnCZ+VkXCYHRTe2ONCE75fsUJ09.Z8tj2rv.qe8PIIe0MOshY
o2uKwiBKD3ZjK1wiWqw8adjI5jN7psC8q9CoQAwcBaHC63TivuwEYZPuAjbf
vuiYIGzEr.79PXaYvT4NFceBSRFv8R75fiee+lJw0tyAbXm0N0Qrba48LpCZ
h45IdTWelesheRBD33INYZ46qsqrVuSmMdv0ZzcPatGk2bw17JXRtVV9bLFn
pAsasCWSJNIX6SmKSqRZVhbTvAHchiQ0gigTQtMM3qRZy117NqDm7eIqQ6aO
WTl4VmdKZaXxg3f8gV7rxh+xiVe9o3v8aySEBKn0m2FdH60h+FTbcVdqPuJ8
57OL+kPVh5U73Xq.XSxIQRrgjfgBvitFC9usyKyO18fhHCmuvT6hcTeLV0cs
0XZMgpqGrLe7DShfU6Cq+8iOrzEOrUiVedsfi+KWoiG8lMFWSsdJLHSloUe7
ZOLFYSc6zWP.vDo9H3guCll7SLVEP1Jas8ETOfv8.rT+BrICh2hRRKqooQi8
PkpZMa432IsbHTe0Mwel0nUFmlZig84tJ0QzZ5nneO2cRZa5o8eg5WfpAyjJ
8qI3JkAw9bRDaPzEtg8q0q8i7cViMq8idO09YrMggsev8Q6+P.s0uV7ex..m
Jc.fPdMn1U5pjPjwA.F1.BcH4XDKltV+Dz5mPV+DV5RD8qfADWg8dowXbjry
Ovg2PwxDgXePYC2GxKAm1R67CIyIG3XKX7vWi1uMQZqDfpZiGS3SiC4K.wqm
I4f1Wvh1jkBgC2Jj2vZg+SqO+L6vAvV8mEx1w5y708hkpropVDvSnrc4N0f.
1RcgyeBVT6MdArLHU7UawQVKn0ywIAYXDGW4X6oigaOlsMZGOrC7WcLKHMiN
6Bn3MXoJLx11xVdLU8KUAPfOe.GwQpglx5vw6bcPxAqOS+2uy5yuEDyIEL8A
Ram0tLS1XoyaUd9sttP5O6QxiwQTSAel+qGOcf0mU7ZpYx8kUoQMfUDbMhaj
.K0cfe.5fpblTOja4TLNt9rSmKA5nZ1Th6cP3PZZfTSTvk1ncxYerNNYf0fA
u46NGwmwMLN9IVEQVZ3MccJa6dTWo7YadFufv6t1A..XFKrgWC4G16NGGUhB
aRhE..0wktFZUqvG2sIqzjuJACICPLkiiNdlnJm7waPBDt1m55Je0JTzlhvT
vRw3Mr8803siaBhoN0U5PBqCgBC3Xu0jbXgtJNWaLByinimzAf348.vmOb7k
SQxL7P06Eqiw06b6VrkCrZLbmcG518VICuJPDly1WRJkbMC3F9AYzGQ3A5MY
QceU11f6ed4SNd3Rq59HYIPgs2T5sEdLvsBFor0Hzjn8VGBSyNk9T3Vqu88e
y5qQYuZkjF8Rzdp2qGyrBnKGXeR5N5eI1+Roa+3Smd5oX5h41FpXSIcqDtJO
WQzZEqj0tuDS3J2NoZRX0Oo3cNjjWffoizt.HlkCjRGYSf1mavT6WESqBsk5
TpicUs1ikk3c6yCvF1vWeNgBYMIQaaW1pArWGaiF480Xcsn8vx2V7rDqWB2a
5la66e1foG1ujmXgh8uisIGcBqNCcmogcdyS6ODr4KrU77qm1cvxltjxme9X
Xlz.i3hOGATeDO3eHjz3h33dmOeoqsakndK1uGOo42fi2EtJuhoJI2ySUxCz
HqmEJumEVZbdb.ny8nDQZSk8J+AYNwoNTCMGuIKkj7gmcQy2tzEME.iKX9NT
S4jWLVEpzJqiXaErkFiJW3poZ5IZqOjM5kmwTCcVbEJaKmcnNjWBKdbhI2VZ
5.4hlnQGUk4vzlGKimihCY7NW8Sr.ERObnxaW6bkPQreUvqXtOT9VQ6EuUYQ
iXUZ3aQEedR46FjtgQ0kan9YJZHey6LQ2yMrlt+TTkSaZIygs5LX+yHnfqEf
BRZBJpeFP.nJQDsJbaTFSK0jO1dnxOpReZqd5EVDQDUefBt9fyeTQ6adzNJu
bNCA9X21wqe8F19qewNm+4CqdIMZaxdlPTS+vd6JzWp3nbTkC7E2w9fCc7gE
GVmdt3QZi7zwmBRYpubWZPkGyljj35Wp7yEG9bV9kODseeCTLK4P+WjtFiWk
7YeJgdwcx9t4W43iTS27q9Hc7b1irClT86KHNNe.d8u9uErOhY5HKRnBPfxK
JREyWOtIMINtV6Ubk253Jao872DV5eNnZmACNDTmORSRN2SGO8T9H6GyB2Q8
eNqwMPac8QmGWOcxvHyKK5ZBXsQ..qhhqxO+Q.AcJCTyoLvAiJdlPdjo9hcZ
rfm.pNJzJ4TJckzQGCsnWw5zQJNYk8Znff5NxdSl8QqMIIoaYmMuxkZ2dAQX
EXtHhFPHnxL01xvbvfwGTU+hZr7nIfwr3HshdjPQJ6Bc31OIJIcMuAix0lG7
ZzuSO7IeDKxWrNx9wG22Y3ywuF8aV0JS2cNFSDsJnXA11PU8hbFLhxZFgRe6
6+lJFEyqJJojerremgRQm2mZ4Hj3LZfUSdq2iSNJGfP5YORWDB8NCg98Z0+A
IJ1XpsViemYsl9j0bHFVr48sy689NTfCfyPSEo6oKQSLljTiqATxBbD4bOcI
4M3Mlx8vy.xtaLIKHjYDt2HQELFLvXr5P.Mi9UlPlpSWlGzL5gqjrXFxCJrH
7lTKtZFlZeBO8nke7Lcwylinn14vf2EjCCtN284vfjfzKBpRY1EoYFfTKu9.
dRgO2a8YhFeiSo7n8Omnal0XWDWdoPp2f.oyLZIIy5IqX1+js+gtm2SUGgW6
Nxgpg4vKPtZnRvOEUJDEOLNr5xtviuZ8YVY5g14KZC+nIjF7UAiHP6MxK.Ps
3QAMgbHf9GryMiuiLP2yTZyw+8wP9TslnsVeXL21Y9YMrO3DZHbBtiXgHd.7
s9LqUYs8D+HKvy2UvZX4+9LaOWs9E5a++H4qqoeYVetDnOvVBK+uOuO1xOAT
my.Ae.RbX2jluvd2eTZzgpblxOyoREoo9DRD3CQc7AJ+zfYfKO8m6Wum1a8b
1nKOLsNDfnrY.V1m7k8IeYexkDXxZrRQ+aANeQn4NbzhSJZEgVxzrIHCesDS
VEwRULZwhr6IedL0gwFdOFGaY.DRYuHnI.jjBMy8Yf9SsdMX+1+xyOqWGIXO
zjWKb5819EkiS60q6jXWrcTt800KneuCfoieMhcH4UNpysxpaZen7LHQZv2m
lkRoSZpbC1bKxtKt621fezRoFdhYEx3nQUoCGVjoHPgK1tvqHa3r6EpHlCUr
C+TkCA6fWrL0zQIA33oomR9uGcT5sjXKfpdQ4XCRrw1NWdNQbeNdiwVtLLTo
gIRdAVkOKmKRYRZQdmk+Q7sURIJgEgvSrWYpqVl1jKn6D5BPoGtEcoZM9qqi
hXuAFUfd91EbxT8ChVqLM48VVAVhhwIIGp2u6BfQwjjdXkv36szF7SVpR+Tn
adJdq4xAISz5kmxh7tXkN+4PV.xTMOfnzHKXSbWko7M5tLMKU5Fux5QdNLIL
eodhfArZjOgvD+LvFG7cAwun.OD6ksadHj8KPmZHROU.ngH2lwJAqMwQGdUL
Dfc+.dNM33HCNarqMz+sMZCS3CR+9pdaYFCKaCxBpnNpnODRcs.u13Fx2Hkx
v9+uljr05OEreC6Py7e8a7i4w5cGpZkr3y7kn8BLeWxaQgr2owMwlZpApKHq
H5R31m8HKD+USfpVRFGQObJq3.g+2pWiMKtiGKDdJheh.P..f3gV05VY46i3
a4gN9hhXqq7P9oXr0UYMkzvCIoYxtCN0Vji1fG53lXa0NmG.6q4vonQ4Onyn
ciCp64NS4DYZwQxra4fuk+88PNcL7X5lycDaeG7MM7rlYUP5KO0VTn9306iX
eze+TXeWMXavgdQosGypHZOv9uN0orcR4wigaN1ORHHpQYMzhsioOkdnXTPe
Wth5tiuawQQqVOXDwl2CFrpqN6zgCOl+o56KkkBGYI816HMeTWW.accd+.a3
9WxS9Qll+smqLuQs4NpO+gBSO+2++7+9uX8ucZ2ApgEtInECOKFdVL7rX3Yr
M77Wh2Z8W27ZRRr0+qf2Bs9Yq+8WCs9kjz8Lmf9COyB3L6c9exb9y5OF9bR5
hooESSKllVLMcwllpbwyWYrihCcPfpyrONO9M3Jo.wEcjzuS2r577I0BxqBF
Pjs0Oy+kpMTSr8GXQfTgDrJfC2+NE4beF3qeBZgAJOgwhxKnsyZHFSP3tJ+W
s1Y12capF0Nw4RrhJrxy+LVoraEDeAoEwbeGiJqKMpPLAQiXiIkHlsxyfLj7
dK+1ZTGaTtE2hTtgPAuBTyWI8QfbdmMl7Zpjnv9qjnrx8A6nRpPG3.DkXFQE
C11uU83VJImzedaaP.vUaDnqbGu+SDhAmig4s1s25DKPneUqcsgbZWFKxpMa
0I2li8bU8h9QR8xUvpUuDQFvh8zV85rndMQ8tKLKMQ47X40HWOndzDEYh3mk
oMm1zwIbQBMfotWZfO31+P5Ct.pHHfAtfiAuCcAu15hEqH1Rm0EWPQ33R.Ti
0FiH2iqMVirVlUZQ0xJFFd1YbWkKgA489H0kGfk.JxH9pqkQ8J.w9+fuBvhf
WUYFA0q.jbWlRRbgTqgfhH4gK+o4z7FXDbinZ9HkSDtM+nQ62F9sglJX0A2f
TGfgrx+mtPGYxBdrIvFZpnRNeMIEJzLfJ4XyaYgFKtjiXF8XMNjImtBguYbz
0DJYcvAaiLuloKC74Hgw0P2VIydxUmyURpi3LCFFRrmCBgtr5HZLoTQhtrFH
YLI5SledFMFebjBcgB3Xx0m5NicAlMNRgtz8IbLcb.CMwygQSJzsyIdxm01L
QCNkF5wlXWYzHsVcYR4N5uOx3i1hFhL08pPNF5Wy3HE1ygA+Hs8KdTwBcMGi
m9NKZKZS9BGP5N8AZT6AALiEymP7ALNLF8zQ13i4XNn1gNYTkBs4e9wrOLTW
qfnwz+bnt9T.mbqflIZS5nbn1tximCT2+nNXRaCd8WIEJoC+BpDM3svsOJnY
xGYUwznmNkIhdaEwwL5P7k3jmBhyI6vxz1PF2Hdl.EGbx5O05oC694cGUyWq
PGmtoerN4CwqigfGHp.NK4kWJO9Lc1z7rE6UpXCkAE+rSlnsBqUyNNIYgo4I
.TiV3.VAcOu+nF1xqu0dmU2rSnxioIY0XX.YHinLf44IkidQCREKPSBiFMsD
FMi1JzpOjHiKckN7vALAEmfaVwJ+qQ62l705IN21jSzQHOc54m4TtlHw4J9S
YnJhWOLsyqCT.4jD8MulOfzfI9G5hWvSVgoAGCkVyqcEzmekhxVucMgCBFhu
5tlE3UwuEMxgD796hrADY84fMYQuIudD3fqZHTAak6LWrDVIkAGTqgog6oty
VeHdYphvyTcqOyUXOdNCXAJvWdeTRNAbQjVo5cvuaGnWizE6Dn7.UbCqMgK1
IIaMv9iL3cqNp18ShM+fMPD9n4fk59o6boFQQaXgAxJKG40847RtMQdyxYxa
VJ6NRDm4GnOQc2Qj6bq6n5lmH2izq4cuLZay22DGZgznYmye4Rc6GgGmBUxv
6rTztvT0MZDtmZNZmTP90UC1Z0n40CsAukuMXy+TRCO+Ph4oQ6tLqiuvBwRk
1D+qudVvIZhMC3SdCscVuUKPO8EjG+yA4oEXp8SRiGjGX.dPdXcdRCwCBowC
xEODOInNOogPK4oS+AezP7jz3AgqqJqG+2w8Ii59IiF+mLn6mL7pdxtS1vO9
SBqpup2P8jPpdRtC0SBp5IMdJNUOZG2wXbhqNcWccFB7UGKoNCg8MWcrj5MD
12b0wRp6P7jbLYr8v16TqGsi2Xz6rQedI8YfWK9ZOYZRsFG.GhmjNiC7sGk9
L57ncFkY94OZjlO5q6IALnQdcOIMdPD6A3AYqyX85YD2Po2z5QCGkdq1ZMIn
6M6QSFEiq0OjKxx2Rz01qBq6S5ZMiaqkw0gvEXacrvYODSXXqiYF9II4ZQOh
ut5oqsMQ7zc5V3POhSqGc8jWenFwQbMXv908jzYFC7nrhBsdzP7nnZ0wItgX
ZRBQ2gjW8SRKSmCRWFsLnAFktL57naf4CUWFcLthGB7EqSmSxP3sHln4vfqc
9BrNcNsGh4Kv5LuNYHBd.VqfkOHpIcZRCvyAoyrNHz.ze.oko+gHXcHacaSC
twJsdzP7XXrBoy.6gXP.BqQ.IQtC0SRohbHlyFokIjgHtKH3TsbczjM6kNfG
ZHrJB8mplDzyfAxW2SRGKvvgvcQHYp1pWnNCbwCRaBoaOhqMNEPs13fQwOT9
iFd6dzJ6cNJN9qUql+ngxezhbjH3vg2BSOl+w4O0U6B90D9s69.+Oi1K9Sdh
2tJM7snh6mSOaqBR27ZTV3lhRavpu4IxlrUL1JMc+onbDmelWDorQi7xnLOK
Cd9aeOLNN4qhbAYUVvS0ADdReVTUHbb8sAdTTdsssGDydA.3.QNzVekjLgkr
J7O2iQ6Ys1hBvvZO5GBX+Pmup5WPXbHiNlp8rI1PeW+G57U7O6GOeJeVs6Tb
Vzw3nb8PmMGd9PQe9POGrKuoTWHd5kZOeDf.AnGDDbHz2Sz3QX1qZ+7yOrF0
d18.KpkimihiKkkpGRohrMZ0KoAaiXDXUw4Khe6Psk8ZeLTo51iqgp9q12c4
yvG.8cX2HF36AHhWQeKXiOUv9WDoPDxETxrrqNjlvpkK4czoeT+x6+TVRY6i
eMW+5GoqpYN7eqH2gKwupI66eKm5wppqpv8Wm0Ux+JK0jEMd67FZ0W0PMVWL
DIdXUw3PPJUJZlWYhdxEVPqZ.qbH7WYFCr1krO43AVdNK9baCeNf9QkLXF.c
.97gQ.HzyVHy.L1ln4nYvCU9wvzi03NSU6mCykiy+nuN1dNHWhv5iKv1yS7J
OBdv6qJsi5ujrOXSxp9r3365RGr9PgABeearCVsgRWOLjvGr65SMovekGAhP
tcXnRUuNPu851g.PafMBDncONnmmGWbPTi94JUaHtApem0gioX78cIEuxGJu
qGD6B3i07PtNXRtoeOj+rpqGUdH7428c8rscEuBgfn5.evlMM69Qsj.7E84P
Hh3UX.ffzomKvGJPD5rSPwvR5fRGuKtmK8y7e9w++.5NbbwB
-----------end_max5_patcher-----------
</code></pre>
view raw project2 hosted with ❤ by GitHub

Project 1 – Arnav Luthra

For this project I tried making reactive visuals for rave music. There are two main components, the video of a 3D model dancing and an actual 3D model jumping around in space. The video is separated into R, G and B planes which are then moved around in sync with the music. The 3D model is distorted by a jit.catch on the signal and is bounced around on beat to the incoming audio.
The beat/bpm detection was done by an external object that was rather inaccurate but still created some cool visual effects.

One thing I really wanted to add to this project that would have made it a lot more interesting is having it fade in and out of these separate visual components based on the activity of the low-end. Since rave music is largely driven by kick drums, moments in a song where the kick drum or bass is absent are generally tense and dramatic. Being able to have the visuals correspond to this moment would have been really key. I tried to start this in measuring the difference in peakamps on beat with a low pass filtered signal but couldn’t find a meaningful delta. I then tried to simply map the amplitude of the filtered signal to the alpha channels of the layers but the 3D model would respond to a change in alpha values.

Overall, I think I could greatly improve on this project by more accurately measuring beats/bpm and getting the triggering/fading working. Below is a low-res recording of the visuals as well as the pasted patch.

 

<pre><code>
———-begin_max5_patcher———-
6063.3oc6cs0iiiak94N.4+ffQ+PR1pbyKhRT4gEU1cFjEXyrAHSxtOzUPAY
aUtT2xRZjjqK8fs+sGdQ2sjLsDksmKSRWkKcwj7iGdtwy4ve729ad2hUQu5k
tv3OZ7Qi28tejck2ItF+Juq3BuawN2WWG3lJdvE67RSc25s3l7al48Zl3Ffk
kWKb+N+v.uLwafJtZZ1aAdhGs7A82H96nUe5VGX8WOZeVw6CKtbra15m7C29
Ph25LYmFYiVBtwvjZw+EAv+IhcIi+YwKI+hxdK1S9FKVX7OE25++29a3+l8q
aTdrG58Bqqd3PO84G+JqcIcC.X0..JsG.vb..vTLjwPALPrTX7m5uMzMXwMC
9oIfQ8SeLIxCp8HHOfTIt.oWTxi+cCvRmoM5IiYwADKWbH9Elpvn2OLaN..u
WiSLbWk96d+iPiaMd+ine+jfC6o.Gll7eAANyL0PuKDfKcrLwXqx6D3G5sNZ
eXVCHXT.i4X.FGIST.nZUB15hfK1TapyLfKjoPvblvk9V7D649Y2cwecRqXL
sFOgAlHXcXYqvBlGChbytdQAywSFbUfBqeacfmApaP.pHHf5ADPJ.BPhTjhJ
7NuYdVOv5Td9O68UC28a7ilFT.FA8.VPAXgDHA0QcUtlAr3S9YKedchADQAF
NVfIo.JlNBBCnsDNnB1iRFFGANXc5G14lk3+5TIQ5UTxKI9YdFItO6gVtK5Y
CLv3SwdaOByiGiByR8+hneJn2UB1fUBr3eAgt6jO6eJwmqS8oyuwDuDZYYaR
YvpIbIxFaQQLMVLkzZ3yuj4zrn3YA6PfYD6.TIe6YF0FZs41fktouEtNwycy
j3TAGCSaHSaEqlngC75XAJDR3TzSylP3XbY.lHXXAMgJax7rHEyHXU2CdEW5
LFE53bo43NRNpsuTtKo2wtpxs6YrCFbdGyG64K.pI1V6COlxeaV4FtcRCQ7n
HsECQIMskJd6PzMmkY3MItuLI.vgLhIYhbwsoU9ulwY4b16O6uwKJNvMzyXc
TPTh3ioF2sJvKbyCdgtrOX.MtaiWb1SE+Mn396h13YPMbLtS7xrGj++.KgGA
53BKezcsWC7ngHXjphfcPmtH3gD5PjXODJ0SlXZeVk3bFrZvYLVMv0PWJ.Fe
EX2PJi3SGPAcLbhk1Phj+xdNWilXrxiYH9TDyRGEiXG7RJFiHL01cHB+MZBu
PBa+fADLM0rHiwqIlDGgpF.oJGX6Km2m0.BLJh.JpjH3mGvfoyXfAH7bSHrZ
eVVT3zXrM0U8NBUwPh097edATBaSx9vOyz0n2ocU8KDdTq+MqQ8aJPCayKG0
u1.Cznbjt0R7OGAiw4+T7UEXD6xfhkx++jPCzXjShspQZ.gTAZ.tTaMYbTpe
leTnw6gFuGY7d7zBoiQYCqSM7fY7fP1A5h4kl9siUU2COFpBH1ATBCNPKgY8
lyLHvsnM9E+vMQGyx85COxXbLI.UW5.1TnY.TXSD07hrqR7A+ZdO8qF28XBy
HXtkzFHhkwcBizwJXQ9oa7MwQuFeCwLpDDfJoarEZdg.jqBKv4HrrELD.sAz
PrOoXj.lEP89TuMoYa72IbYh3SoYtIYLYUfhKvLck8vDCxrLi.sz8LhkS4LB
D3HVJaZgtZlRhhMti8u+fwcO6FvHVNZX7MRb0dVwUh0RatjBL3pAXSC7Y7Mt
S7qG1GyonkelweMz.NKTun4k5EAWhDbTvWG9za5RmMGSXERQ1kRurrcVRgXS
n0YPBsprVm1lqLlv.nNjXyP.K1+Qsq1poyEohPLtWPvpfn0eVAFYJ6D85Kxn
cuH66hBcWGcrf3ccTfb1foCzf9K1px8QTF94v2IW1hOKG6kV…yPW9tc6v9
O6Av1.+zLApdSoxSEOaRzKxtx03JS7XBYOnIDtzgo3rvJJqkNLfhAyWEqLSW
6FvzirToGNAvQECbjkp3QwSGSWZliQLSMsIXDV3qJ5Yeo5iwoa26e91rKryH
V5VBlbCAZ3OftXDxH0JLbylVgtTkBez4RPIqk7hYOkAS+4YIPdHT8p3gkSkA
hVTbo7j7.LCOqv35ncLqLx5X0bjenQrWR19jUdaLd8suX7he1SFQI9a8CYpO
mlY3xLOILJYG6uj6E7oDNykz7q1uZU.yFTIAmh9awpxUCx2uwWo5aPmcMOzQ
skNxVZbNoAvKaj3He4PhQgOZH2MKK4nLBNxn+nBL3yiO7h+lrm3WlTiqQWNv
FRp.gZxegDrZxRJtGenIGi6xVneZR9V4JnD4DdL5u7.PHKxXqW3nn8NBLaoG
hLGmJFkTrCOr8jZLJ2oTd5pLSxi2GF6t9yb6w9z9cwFDl8uO9XpW1Q8wyQ.F
6QvmyFW49WGjvamHD4m8xgslh3hBwvCo9rMwt1lLH2FtKpHXgyU4jcnbxNbe
NvRUl8NiQrJ.UQtIcOnZ7yNOtLo8JyIsdzFLlnWxAVo9lCoT8syMJoA4g1iI
5Xg1U66.0Rt6Kpl2jGHviAEd7Ezhvbaw7DAddgSKSBGSbUawDNUBRThXyYbF
C4Qi1vKIGDJPAFuQ+.um8RR8iBqOwwf333ZW+c0eIN38oHw2k8MUWyOTdMb0
0R7d1u3qvr5xtIrwaFavtOQhauVoWYN22jPFsYoiCjSmEcsJX5VjLsjwPKYD
A5jm4k7Dpqbv+tEda7y3.7pshffT9xfkN2T6GvFuwpsb263sotjHFdG6E5GF
m3wTIJyMKejUc+MdO5tOH6gdDY07AZKnq4c6Vf06VrMweSTHuizb9he8hlrH
.33+r1XR7Hgtwc85LJUFp12cSYC18oqbS3Sm4JjgJuaVTTPy6U8lAdOlke+X
+vv1.ZVT7.2kYyySC81qhX2c2fe8hak9.isu31OvVxm8Pp6ysP9L2ffbl.sZ
gWcC84bYx7kyGHP0ckwZ6SoqShBBZNtk254tt0F1hh0dkFI.ZPdvdA+3BBqE
US6a725kl05hYtaSacoC4Ewt19U4K+eHyaGS68r1OQihzPik50Yc17FCxBsc
7Oj3tyfYbBevB.3FOUmdtquwRuomw.Bg5OSdjAJF.J4YbnuoF1IduqRXSAGp
Qidsr8pk8WtrIMOin8ILy98S8LX2wXeJazXj8jmAmcYPJ+hb9oFqihR13Gxl
jSa700v9Lbuy.vSbF.z3NGZu1.1rcjjBFBA0TNfTE+t5D3GhrUh68SrhNMnh
NAZUnLZtgVxji04BRpNDh8GzFXYOcvJegMxQZx6UGXk9h+WLvlKz0RQqovKT
57Mnzw.D3UJ8k.xd8sunMLiLALSls9EPF4JEx7qEH.SWd6jgKYp6zQLTb0fV
HsgVnoyC6JGt92zF+d7jorP13qZ18rNvPqDOQFWlKFu9UR7BKiah5YKQO3QM
SH4JQ1mgBhVh+.8fToLEXWWf94JDYzZVhY.TFW20bCf9Xox.FmjxembWwV0t
BiN0.NqcEKU6JzYuqPNETYdmfvp1ULm8tB5Tlfl2tB29W0WBMuDKJ2U5f.mY
wpz2jfqgNHYfNHrWdjx+n3p5MU2ktzkwheZtqGOlTosl65cLEgQOcNKsAyef
jXao6.Igd4Bjjg14BoyhJCGrIu2qpiv1yWn5zHzOy8YG9pIuC7CeL5TB6Z0g
TpdKiQMh9IRwtlbgpiQYFqLB3+adftQjALCsw+D6pc31RZzgkJHmrfsHWxW9
44qrgryK8Ii6b2mEwHM8WKxtkD2WjEDDFsJqGDbXYDo6Y.mYfIAEn4pBRsoE
Hf8G7D9xw5pfAQxwjfOUrDpWtCMHwkk0277m8hUjyD6xgwc7glwl8hzdQDsy
fkvx+cGe2rM9N1k+KQurj8sYbWItGyM+V72UALvDCGK5npXZUQ+gC.Iy5Ryq
hviItd4E5VQUGZZkzhQnsoMFIceCVtCPcDmZ+7LRFHxhHHDIb8tkrnqaRA+Z
PI7qAkvuFTBi0erspBAsJPjWE6rqY91aSu3NuVD+nAtuISmqZO05.+3m73j8
hADzdIPWtwFOzFvgUC5JrawJOFvnGE8ZIKk8uM9q4z2tIusnkGhbybqAd0QO
IvzfBs8SjKVpjs4+4e7C+iTlrnOj9p2N5G9lnWB4kxwzO7mih1X7Mtgq4A0w
29pHvCVtKtgW9K919renD.2E8ruG+Jsepfnn31SFxDCLLiIi3ANmy5tM6vts
.zXpLUDHzej67vaN7QdnXnwP08NXB..nNlKN7Y4NyQ98bSWeU6C8+g84eQfC
uMe.IxR+deBuvs4tBj0SX5trgyf6vdw9jZN6qiuljbf4iMCGvR3mW1FR7hiF
nm7XAIAnquAt8X0FIcAEhBTPEUdOeIBi5FDvDYMSQe4Fi9FNkwDTmeQBUBqn
BXJ7rcUW.KyxxrnCBT2Jlt965e1kMhSSVO3HthTu+lPF+SMnHMMwBJRzhtgn
iLUx60BqLJBs8tlK13F2+jYyYxa3++tW.TTVbFfzYsKSZ4CUpSws34fGhMk6
kD26HRtp9gbrZPxGOIWlNu+yQACrJo4j4.CZN99Pp255KXZ7H0Ds0xO6su64
XGb+fgo1TYvYJQqCDJqEEHryIo0PsxakNwrA0xhYr6RapE0j1ezHhzlhXSIL
BPVx7PTBpcbXrbkDCT4t8fo2CudhAQDiaE+peZSqSToroD3JHY.EfkVvBMwW
vPWYPBy2CMv.ssdFNsf8QVLoIVKgXrIB2Ywb85f7iuvsVYrq+RYmp.2PKYQJ
BbTmJfSYBtaN+fWYg.TezclSgtSFNwDrYI7QruVWu1pvApuktnoHJFK8KtIC
IKfPmq0PAcJ0SdXi5IOuDxWVO44ENMdLBnXrs0oWFGXqOFUzOOfyJOctLV.Y
0CTdZVPbN7Px4TbY+OElsA8MaCjy25d1Fcxy1j4a5l.E5Ahk6JNoiB6yuflt
ES3W9o6Yb0soL2QwzeRMcuyKKIRiBAMmhkS4mvBT3Ik7H0KJ4+TUq+oj+HxC
VZLSE1ewoz+gSAmvB17CjaD3mF572vdcok5F50dczTrAHujkPvkn4k0l8gfR
gCi7DZgLvZXxIhdCs6clJw4ielkVfd1pZ.E2Yb0JZhyju4NuViVU76FSZ7.Z
aI0u.MF0DnAeuUSjxE0XTAJnszoa5ZnH8IIt7mpofRisBOOO8OreFtw60gRP
fqETbR9KhoiLjWdlOQf7jAQzYNSzbTNoqLm+D.S4zhCSl8DLxT47tBM+Y6Dm
2nhoXj072YTsu3XMhzI5r1Co4zzm8LxhqtfhK6.yeFFRNUpqNwKz0QWjbgH5
Ngt3EJM.wJm+lPz7SzoLKstVqbdlQOst3EgOxIlQtWucvtj2dVlkQpq0A5BA
hp2EQlWJTz5TYPOmcFkU..N+cFn50Rf4WTOTYjAM+JRBUl4.7RQVehcwKgH.
n5R0GtXUTKQ9KSyI2m817fLYTdfW5Y8WsOSZ7YiLP5DSThsAQqbCxSBhxsyZ
3rlnJ4Jld4FnHV++5zNfP5qF.SF7z4SleWxM7HuB+0vQB8dTkeS2epuf3uQ.
7WNScPf6WizqU.6e+8hH1+96Egr+82+MQq2y8dA6Jeez9fTOuOaTFG+2e+5H
dn6m4c+8+EO+Ug9e41+ZHmN91e2+0+3+4a91+1eG.f+9a++91+iaQ.n8s+8+
129+9m99+a+u+96A3aCxekX+u7E2k6hq6wqlg9u3bUuUn+uH0KvacifH9l1A
naYpATyqQ8lV.+XiEwxyeBdt5DUb9Acfmeh8YS0oO4+XV2gG7heXuafe1akN
XKkGC6MdhzXOuM871OxOzKB666lSO2UDKK6UqiRRZfNsYRIGer49sYOsqmP3
eQZv9jZwxd6aWKP46ZrItV19PeteEE68r4AivffnWjbFpA0ciCGYHIhd8rDO
9o00wGx0nYXu45OmtPEVjWxCPa7Xp93DjbYQdwB6Rd3YmXrJd2s6Rm1YX0XN
6WyyxVnLiorfy7IWUVz1sUbpF0bMYLy01Thb24jy0fhedzC.5puSdBxj4kjG
nLUJwn0iDYd577PRDm6qw6gyxYiIAo2BDPAzJK6kT5E7rOaavxmbC2bTBrQd
Lhn4pTQAvIChPakV5Mi0ID4YwbyPEaSzdFs9p8O9nWRYnhU7mmuCvEhlKhP1
HQ4jljW1CU5HKdNKSK7hdyJCuD2zYhxcD0DD7fGIE1xRpRsBSphvWwukC1Y.
K+AY3vgLtykoOzy8VGalHWTKMyE0BWmKZmU6hyl1H4rRS7BYVq2jgPYvN.jG
R1howGphPTv4jsfEVy0VLIYsoL7OySaoy.aAMn.r4XN+RsnfZ59cQU.NcPEf
U0J.6QTlYLwxYarTAX7LVOCYCRO2oU2FwViXHleHJjeHWXpigXuJvdXNdpxo
AnhkQHjyXLyKulPHMyinzwx1kcwLZLGS3lxrOJ+XO5rrXVGC0wv2xTFsQmyg
ZeKoW+15.OCzzvfwbtJWfAR2lpzgo7ro8p+NujIUdvPnwi.H7A0t7dQ.Q0Oc
tfgMtq+5jPAHXL0j27S8LaPmUv8Kzx5wv.i6aFd0bkXUc.HdIWZGEujKt1Oa
+FudlXMUj7dDT2EG7Qxf1kZdBphVK7wqvC460LTIywm1avVAJcXnQ1L7O5qj
Y6TaS05bBQ8FTk1iBzV6QopzflM2Y+1ap4YoKX1SW.pit.QIXudYjehMHVoF
TeSyHUZOar9ZPnRMn9V3PUZkpCReMnJsGFOmKbTpGf5oGfNa8.vLtx09byvT
zf3iRXS0aChNZCZq2FDdzFb1mUOZWvxdFWbYqDsssk9fckjA4.ahL5cLqlXP
xbNyapDrSzljXakjLZoOAU1JIYjpOAU1JIYzViMnJsGRayfVmjHfYgpUstfE
cF4WYYqLcrlfcxYlrxRsUpP80fJsR0YNYGpVWvZN0xTzEPp1EzQCBNkwrNZP
kr+jns1inD2BzbZysZcA3bRZSTSAK6KdWvbNYaSHJquilH9TRAKQ1SfzSChU
tA0ifIhZxIzmIgDkXRSzmjPSGkgTM0fTkk0Cmo0pp0EZkmf5cspo8ovtPGMn
RRlr02RGSk3FoOlQlJwLhnOq8LUiYjFmBQJ4LEy4jrUot.gLi9ITstPu6x.T
WcAk2kAczfpYmOcNgcnJv972ENNJzG8O97gBydWPIWhLaLATBDl8dvwM4XNc
SiZffnKLapwnjwsX8I.BqjHcS8YMM1TUcHziHcrRhzI5iwNVMII5yiwX03dn
woP0h5AM1fJom6LJlRoNvbFABJ0AZcf2qW9yH0bau97aORIqaf5aiMQDkGgZ
pAUhUn9XTfvJIj2VuM3wQT8YvHRIdu34zogp0EPNy39zhN2JQnlDu4LRSTad
eNMfDcJBgKdpc9apePzgAP4gUkLsDjmrBM+KnLFeMwNk+0LQEAcNyTQPkjv.
0WHU.MOyQuIDoLjpGmqCU1vRbewGaqCHZQS09fgt8gBcGGHzCbXPevAAcd0k
QFCwsiM2xbZy8wWeyiWPHxik35UN0ZXBO5kEYiWQMbf.fNVvaZ7oV0BjFYe2
GaEt00SrtOVjZcUnWdmIycUqNhWfGu60nuXRfN1N2z4mZzgZ7VV1ND.ULBHT
HVL..VPjUqWpbn+feHeNrrvbPYuEfbSmeBVOR4yGLE41TyATSPpImnUaezOH
nrW2n9xTDf1K1l3twmOiUVAeDu.rnah.lP.5FYAgG5PkCTDl+oFE3D46gJwG
pXDU+Wc73kshCmLf+jXfCEXJ+jjxn4q4FtM+fz1t9Q.cbRD+fxr3nEeI1o5M
1mEUNJE2z14fJnTODTGYVTjkKroMH0BaWmFt8b29fL+z.+MkmJ7+3gzT89kU
Me1DyN1LSqNQraBup.0Nm.jctRIvMYxUtP+ENeCicQgQow7zjM+cyO50UXUl
MECME8VaG1.T7IpIjIX8fQ43oZOcxo5D6vbDu5G8RcSsP1lxkr1.BkJ+D0DO
GzqGiX86hBcWGsnGFU.nEvQvTC.gThjUK.iIlCSd4XaynptofrzwgfsvpxbC
bSseLJhQvPDi6P.HAPP.2gIDcWutMcHCA.NRhODxT9IL.vIMaLz5lFF3.EDS
T1BMnbVmMmaQutng4yVNN1lEexAdDpYH1FHHLnHaKrYNaHJx4piZl0qnBdGH
lrxbPg.wsW2c.wLarXJDR6XSIDa4mPHH57SQyeS1u9WvO87WS
———–end_max5_patcher———–
</code></pre>

Project 1 Proposal

Similar to my project in Experimental Sound Synthesis, I want to work on making rave visuals. Now having a better understanding of jitter and video processing, I think I can make even more interesting visual patterns. I also want to make these visuals responsive to a sound input similar to our FFT in class examples instead of relying on MIDI clock data. Also, instead of taking videos and altering their playback like I did in the last project, for this project I want to do more generative original visual patterns.

Assignment 3 – A TV Theme Song in Different Spaces

For this assignment I took a midi mapping of the Gravity Falls theme song and ran it through a electric piano instrument in Ableton to create a totally reverb-less audio track. I think fed it through the convolution reverb with a IR taken from my bedroom, an IR taken from popping a balloon in my backpack while recording from the outside, a church bell, and an accordion. I then took each of these tracks and cross-faded between them to create a piece. The IRs and individual tracks can be downloaded here.

 

 

Assignment 2 – Arnav Luthra

For this assignment I took the patch from this video, and made some changes so that each frame it saves to the buffer only contains R, G, or B values. The result is an effect where instead of pixelated noise it looks more like multicolored noise.

Video:

Code:

<pre><code>
----------begin_max5_patcher----------
3348.3oc6cs0jiZiE9Ympx+Aptl7xL8zC5NrOsas+CxqSsUWXaZOLACdAb2c
Rp7eeERfM1sDVsP3A7lLUraKAny4Sma5xQ7m+7Os3tk4uFWdm2+v6qdKV7m7
RVHJqtjEsEr3tsQutJMpTbg2kE+R9xue28M0UE+Zkn7umT8v1nphjWOTWxZQ
M7K+yD7gRy1uMeeUZbk34AaKdWT0pukjs4wh3UURRBi.O3euGfDV+EgT+ID9
fu2+o8lJq98zXQib3wKe1U+9tX4Colvdrkv3W2walSHIYszAPT3e8y+T827u
t2X.YabYYzl32hHkU46TgEXcXAnGrfPPB1m4W+EBYGVni6gtm6eoHoJ1KK5Y
Onu222EuQET.Cr.JvLrf68EeA7ASErnOUCN4mWrVEF.XVoZ.EbMRHNPXSSUC
c.xlHtnAREXnSd.0CVvDJCXLV9kkRC227+WMohU46yphK7.cPhcEwkwYUQUI
4YOlljEKtnSDF5p8nArv8.V.nTVgJ9hYltSWx5TsytzqtFgJDUQztMxav+DN
ad+wtg5epomfXeOw9sKiKTpCFXgNHvW3WBIsLS7MCJiJh1Fy62eLNKZorV+d
kJWFks45oZV9RBmQUqbBfVXsVZgBEJ8gicqsZ7nXqdWzpeSE+akgZA6iCCZj
QHimc5wAL1moCNnZfCxkkFvRCC.W31x7ec8zhDd72rDlteajxvgsQRRBZXnP
ThglYQCCUgCgzStvU4o4ERBUHmb7CPW9zbiO.p.lD1dfg1o7oMhf1R2TDsNI
V5l9.wrbyILS.ExvjZlggA.Fs9u.HFjPNi2ZtOX6MRQgPf3xwjf.HVfGLe9e
+la7ojzTwM+XK0ejzTcUhOAVPgm8HFFsdBLAC8Aghm.xOLvGK+KdQfddBb+i
xNQ4fiTbE6Jx2kWzF8B+QFp74ruJuaeI+g4d0.fR0.x3pFfXO.I+sZveqFbs
UCz4eLMOZcsJhGNvWoBAvhHMCfxwDKlmn.haizDLdX.EqFC7s.CX.7rDCTOY
.g1L6PP5QDfAm5H.eDz6hyV6sNYqRH.YuP..IPBFaxiAQJGeQ.zddWNbSj+j
YpA0N0CA.KFK.iI3Op+bblGzBErPafBYG97DJznPT38TRVT5m4EnDmX1nXfj
yCyQvxc5EtO.gxZah8CB5l9A+9VEEoKwloiIvLuCidmcAmYiKDhXpXThE81T
ff2Hx4JHbp2cWOeIY4IkwdXum3AETgf0gEoK7PlMqlXCj.BD9CAX1LaBTJxe
oz6CJG+HylnDnx0OCIUIHS+UTjO7Ds.fMgJPPAc..b3TeYD28bD2VAWJP4jw
FN.Q.YmOEM4CTrFApECTJC3O.Yfl0vIbpf.hkg3kjr04unr21lkhf1Hn2Nrv
vGP7+CVOqDLXuKN20exy2j9vN06jDJc.rtbtyICXcG1j9XMgtuHt2UK9DZIt
nAFZwgE28TRZ7ywEkmsfpKtKZ2tNkun6MUCeeWNIQr6OVVRlrLzwxJheNo8Q
fOVbTAGWp3fRM0WypuRO3Hs9IkyiBIaexwdUYGZKo0MVxviwUP8kgdWq7b.N
VbW75jp5NgylAvv667A3j6X4lz7U+V75tAww6E3CONI67Uf9X8qieJZeZ0iO
kmUUl7GBFS3oW0E7TzpX82dFePABb4eUjDkd.YtaSQx57rZB4z9p5xaaxu5A
HxMqzI7j3Rxh1o514RybDUWskblce4xnh5txlwn.OTaUdd5o0c7NSieppo9c
IYYmCnU465o1hjMequ6dYNu1s893EUU939LY0OxU3qdrL54yP9pnzzFS.m0B
uFkkvCwJtJQ1e.8OVqb.aeqbUQdZ5o7srpmUU0ZtBwp3WRVW8slozrSU7aHY
Wqf0cG61WmrItr5rBqh1TdVQu0zAur8KaT84lK1tKkyMmcEmr06NQMuqgySq
nWCnmZD8SmTb2MMB4jZT6pT6fHwhER.1rKad6RInCPtfaScgOs3nqkVqQiBZ
8b7JOeOesXFd.XFxWFWUPflvLmoX1WNIVz2.Yng.YMiLGK9BiFOHCbkgrtAu
9FHC5.oLIjgBuUfrmRyyKzhX.GHj42rkT9+CDy2AxX2ZHV+pkfvgKjAng2Vp
k+R+PVvvkxZfLL8VAx9nVzhNDzBGH2E7A2VQjoGsFR7qX+N6H4aGvRrdV8FN
FXHQvhCkJg9Z13gNC07+AfZ8ZGCMbYMIpQCuUPsxWR9C8iTB.GtsLo1I9lI7
hKL3RvPBhE.C6.Y2Lis7nAMOjVbaHgxBAcTNCtAMooG2BGt3VimfaFaZeQGV
wFxbk4eSFXVVdwVcvEcvvkTxRtnb2DdKi1tKMVGdMjPYkKk0M2rJlj4AzZwe
3wVzHe4eqHewgKn145Y3RWxfvtcfKNooW7pugH4aDdgjYzFh8tvKiBMsyZJV
mWv5V4HAoUeAZPpx78EqZ6WZhFv6LxbcbYUR1gkZ8qGCSs9JMu+5cSKLSok5
0vZjoEpozBazIEhojBdzIEnwzR8EBFWZA+tDWFYhAYLwfGehA9tHlQVjAXLw
fFehw2XhAN9Dy6QWZbIEfwtAfiuaf5UOvPhwe7IFicDnBCyKVK27W9SCRLnG
RDLljnw9MDLy3ZdDXriCv363.fdWDyHKrCeWcSiLw.dOgfMx8R9uqvjGYhwX
ZoeeXsUzV5ULsFITaxuWY9LhjqqxrHsF8R7RTx+L64eHqYuLO0yWgOpK8cH1
bpuEDJ6vwHM6jBi39dNWoFC.PSpcSBGP2+LB.5OiU7GfTf7n2ZlmwJTv.DCj
HvzIiUt74BZmb6Cv+2+LZcztJO0JHD6Sxilb4AD3OuNTD6.To46STJwPPVcN
0Iy0wlLeL.MuvkKkerDax8uCXRyYjvjOCYKuDJ.rIcnELOnYUvAWyrg9BI3F
w2BA8P4rv2lfabuC0I3FFyYQtaCxUOA2zlIqqKq3AFWGe7G.deP4IiF1lPDp
ORbI06FjfimAFS5LZMZk1Pjw1DjHrIONkCN.GL0AfO4g6bnWzk6sY.BH.nt6
uImVwfYPDhehGCmZ.fNft+IH.bAaAkUQEU8XMvly.hvl85ZyFDFMqsFXyIb.
.SlUVCzNfYrMg3.Yc8FNuGvL1lQJAjmS7yI.3KJYd+Az6qMSMmnyVftwJirI
dHPHsluaO7om7iU9WTx4ACP1eF08+YOkGsKHqhDRdPfgXgyF1+iJYd5.X9lS
3nYgpu5S.PDY.rOfNwNB.sYRRQ1D2CVx5P4H5m4SRJBZuLPCBL8M727t.QI+
Cr4s7gz7ORdh3RGv.gF82IGZPjJuTukJwCalYnljVSJNXsIgq94.4EVEUnMw
DgBAcFV3rdUTgL64ehLmFmwqhJzlXCvD44BIEO+GTHjLft+YD.za.BP7.jBj
VBm4AH.QCPLn48m1bZUTEKNnG1a02hJjKj59xX4rHpdDTPnUKlpLska7OLQW
K0U4a21885vA75W0otXyxjgnMa7liGot0.x0XYxzxf+67z8ayTyi9VvivP7O
Jd7rCDbtt9gChOcV8.1r+.PRCcjf4+gldWLRmcQfM6U.jOb1hQWXIkA1bP6C
jSdLn4TVoYAyqSd7oypIKN6HUwv1LuwMuwrjAFgXygWspaJhV1dZgycFlk7e
2Gq1SnMGa3M.RyK6QvT8sPbU9lMGSz3SFvrMAH52I5Xb6mNzJPOAPONAO8Rd
Qp5W+tV7FmUBOxi1KaOLgOXG7cHNHurSS.zFn47cQdK.81D97zsOtlsNdP2z
7QYeg4MnuIMHKzYMXPnIM3Yojx4opyUgDPZHAfKHAjQvN1cvNzHAKj6ZPyjj
gcRHiA1fFgnNs4.lzbPm0bPSZNjSZNVnw8dtQbgwLRmzcsG4Jq.xvlzfDh6Z
PiLwPotqAgW6FzLeWNTH0j1C5t1iZjVHycFsoTiZP5H5YzLRfxFw3CnF45h3
tXhnFIHSBbWCZpuR20bWzWIvcgBPMwYon8fNq8PF0dtw6LwH6BD20ARBLtAc
SOHwHSsD24KgPuxtmIjqr2RhQAf.bnPi4Afzw3v1j06xSxpJaSEHhXWBhkGq
4L3weMRNfLirImYxVGYCwOPEucuQrN+djbbQLJBLh6hW.GdkiHBajgHr6bMi
MxPDNvYV9vTiaPGwgjqce301PD1HMZr6rsiMRODOlwvZHIfN03qSMjhMJLZL
cLQAfwnvX4NAaTr8XGpdYR6g7GSV1H8avH1uiLxujnqA7CkDPAinBHxLmkta
R0PF4rrdOy5gcSCZjyRj6bkfLxYIxcQsiLx2Eh3r3OPPiaPGwg.i0U6Id6.j
HWhXx7oHfc3Wik5MvX06wxLKxHOKNTTz2jowAMp10MhDfiInecWlB30d.Vvf
qbv4PylTc2MhNnQ9LftatrfDiaPGwgFE.FzcVFfFoU.cmOCi7QAb2XjAFoUD
LhV9LiB.iooO.zTPvM5M.yF4j65jMZxyba6cQeYD09RZ1qQm89HWzTm+dH+7
2A4Jd+i2y6d727dGWPC7O9eP4xPpZ
-----------end_max5_patcher-----------
</code></pre>

I am sitting in a PVC pipe – Arnav Luthra – Assignment 1

The first idea I had for this assignment was to feed my name into the Wu-Tang Clan Name Generator and then feed the input of that back into itself over and over I did this 5 times and got the following:

Arnav Luthra -> Arrogant Menace -> Lazy-assed Killah -> Vizual Professional -> Annoyin’ Bstrd -> Shriekin’ Hunter

I didn’t really get any meaningful insight into the system so I decided to do something else.

Similar to I Am Sitting in a Room, I recorded myself briefly speaking but then fed it though Max for Live’s convolution reverb(set with the impulse of a PVC pipe) and repeated the process to yield the following:

It sounded harsher overall compared to the original I Am Sitting in a Room. This could be due to the resonant frequencies of a PVC tube. Also there was a certain warmness in the original that likely stemmed from some form of tape distortion.