Author Archives: aluthra@andrew.cmu.edu

Project 2: Rave Visuals Continued – Arnav Luthra

For this project, I continued my work on the first project and added a tap for bpm and pose recognition using machine learning and the leap motion controller.

I kept the same overall layout with a video feed being stripped into separate RGB colorplanes and then moving them against each other but instead of having a single looping video I created a playlist of videos which can be switched by making a fist. I also altered the playback speed of the video using the position of the right palm over the sensor.

Instead of using the problematic beat detection object from the first version, I instead built a simple tap for bpm. I did this through a timer and some zl functions.

If I were to continue this further I would look into more interesting parameters to tweak as well as finding some ways to add some more visual diversity.

Patch:

Project 1 – Arnav Luthra

For this project I tried making reactive visuals for rave music. There are two main components, the video of a 3D model dancing and an actual 3D model jumping around in space. The video is separated into R, G and B planes which are then moved around in sync with the music. The 3D model is distorted by a jit.catch on the signal and is bounced around on beat to the incoming audio.
The beat/bpm detection was done by an external object that was rather inaccurate but still created some cool visual effects.

One thing I really wanted to add to this project that would have made it a lot more interesting is having it fade in and out of these separate visual components based on the activity of the low-end. Since rave music is largely driven by kick drums, moments in a song where the kick drum or bass is absent are generally tense and dramatic. Being able to have the visuals correspond to this moment would have been really key. I tried to start this in measuring the difference in peakamps on beat with a low pass filtered signal but couldn’t find a meaningful delta. I then tried to simply map the amplitude of the filtered signal to the alpha channels of the layers but the 3D model would respond to a change in alpha values.

Overall, I think I could greatly improve on this project by more accurately measuring beats/bpm and getting the triggering/fading working. Below is a low-res recording of the visuals as well as the pasted patch.

 

<pre><code>
———-begin_max5_patcher———-
6063.3oc6cs0iiiak94N.4+ffQ+PR1pbyKhRT4gEU1cFjEXyrAHSxtOzUPAY
aUtT2xRZjjqK8fs+sGdQ2sjLsDksmKSRWkKcwj7iGdtwy4ve729ad2hUQu5k
tv3OZ7Qi28tejck2ItF+Juq3BuawN2WWG3lJdvE67RSc25s3l7al48Zl3Ffk
kWKb+N+v.uLwafJtZZ1aAdhGs7A82H96nUe5VGX8WOZeVw6CKtbra15m7C29
Ph25LYmFYiVBtwvjZw+EAv+IhcIi+YwKI+hxdK1S9FKVX7OE25++29a3+l8q
aTdrG58Bqqd3PO84G+JqcIcC.X0..JsG.vb..vTLjwPALPrTX7m5uMzMXwMC
9oIfQ8SeLIxCp8HHOfTIt.oWTxi+cCvRmoM5IiYwADKWbH9Elpvn2OLaN..u
WiSLbWk96d+iPiaMd+ine+jfC6o.Gll7eAANyL0PuKDfKcrLwXqx6D3G5sNZ
eXVCHXT.i4X.FGIST.nZUB15hfK1TapyLfKjoPvblvk9V7D649Y2cwecRqXL
sFOgAlHXcXYqvBlGChbytdQAywSFbUfBqeacfmApaP.pHHf5ADPJ.BPhTjhJ
7NuYdVOv5Td9O68UC28a7ilFT.FA8.VPAXgDHA0QcUtlAr3S9YKedchADQAF
NVfIo.JlNBBCnsDNnB1iRFFGANXc5G14lk3+5TIQ5UTxKI9YdFItO6gVtK5Y
CLv3SwdaOByiGiByR8+hneJn2UB1fUBr3eAgt6jO6eJwmqS8oyuwDuDZYYaR
YvpIbIxFaQQLMVLkzZ3yuj4zrn3YA6PfYD6.TIe6YF0FZs41fktouEtNwycy
j3TAGCSaHSaEqlngC75XAJDR3TzSylP3XbY.lHXXAMgJax7rHEyHXU2CdEW5
LFE53bo43NRNpsuTtKo2wtpxs6YrCFbdGyG64K.pI1V6COlxeaV4FtcRCQ7n
HsECQIMskJd6PzMmkY3MItuLI.vgLhIYhbwsoU9ulwY4b16O6uwKJNvMzyXc
TPTh3ioF2sJvKbyCdgtrOX.MtaiWb1SE+Mn396h13YPMbLtS7xrGj++.KgGA
53BKezcsWC7ngHXjphfcPmtH3gD5PjXODJ0SlXZeVk3bFrZvYLVMv0PWJ.Fe
EX2PJi3SGPAcLbhk1Phj+xdNWilXrxiYH9TDyRGEiXG7RJFiHL01cHB+MZBu
PBa+fADLM0rHiwqIlDGgpF.oJGX6Km2m0.BLJh.JpjH3mGvfoyXfAH7bSHrZ
eVVT3zXrM0U8NBUwPh097edATBaSx9vOyz0n2ocU8KDdTq+MqQ8aJPCayKG0
u1.Cznbjt0R7OGAiw4+T7UEXD6xfhkx++jPCzXjShspQZ.gTAZ.tTaMYbTpe
leTnw6gFuGY7d7zBoiQYCqSM7fY7fP1A5h4kl9siUU2COFpBH1ATBCNPKgY8
lyLHvsnM9E+vMQGyx85COxXbLI.UW5.1TnY.TXSD07hrqR7A+ZdO8qF28XBy
HXtkzFHhkwcBizwJXQ9oa7MwQuFeCwLpDDfJoarEZdg.jqBKv4HrrELD.sAz
PrOoXj.lEP89TuMoYa72IbYh3SoYtIYLYUfhKvLck8vDCxrLi.sz8LhkS4LB
D3HVJaZgtZlRhhMti8u+fwcO6FvHVNZX7MRb0dVwUh0RatjBL3pAXSC7Y7Mt
S7qG1GyonkelweMz.NKTun4k5EAWhDbTvWG9za5RmMGSXERQ1kRurrcVRgXS
n0YPBsprVm1lqLlv.nNjXyP.K1+Qsq1poyEohPLtWPvpfn0eVAFYJ6D85Kxn
cuH66hBcWGcrf3ccTfb1foCzf9K1px8QTF94v2IW1hOKG6kV…yPW9tc6v9
O6Av1.+zLApdSoxSEOaRzKxtx03JS7XBYOnIDtzgo3rvJJqkNLfhAyWEqLSW
6FvzirToGNAvQECbjkp3QwSGSWZliQLSMsIXDV3qJ5Yeo5iwoa26e91rKryH
V5VBlbCAZ3OftXDxH0JLbylVgtTkBez4RPIqk7hYOkAS+4YIPdHT8p3gkSkA
hVTbo7j7.LCOqv35ncLqLx5X0bjenQrWR19jUdaLd8suX7he1SFQI9a8CYpO
mlY3xLOILJYG6uj6E7oDNykz7q1uZU.yFTIAmh9awpxUCx2uwWo5aPmcMOzQ
skNxVZbNoAvKaj3He4PhQgOZH2MKK4nLBNxn+nBL3yiO7h+lrm3WlTiqQWNv
FRp.gZxegDrZxRJtGenIGi6xVneZR9V4JnD4DdL5u7.PHKxXqW3nn8NBLaoG
hLGmJFkTrCOr8jZLJ2oTd5pLSxi2GF6t9yb6w9z9cwFDl8uO9XpW1Q8wyQ.F
6QvmyFW49WGjvamHD4m8xgslh3hBwvCo9rMwt1lLH2FtKpHXgyU4jcnbxNbe
NvRUl8NiQrJ.UQtIcOnZ7yNOtLo8JyIsdzFLlnWxAVo9lCoT8syMJoA4g1iI
5Xg1U66.0Rt6Kpl2jGHviAEd7Ezhvbaw7DAddgSKSBGSbUawDNUBRThXyYbF
C4Qi1vKIGDJPAFuQ+.um8RR8iBqOwwf333ZW+c0eIN38oHw2k8MUWyOTdMb0
0R7d1u3qvr5xtIrwaFavtOQhauVoWYN22jPFsYoiCjSmEcsJX5VjLsjwPKYD
A5jm4k7Dpqbv+tEda7y3.7pshffT9xfkN2T6GvFuwpsb263sotjHFdG6E5GF
m3wTIJyMKejUc+MdO5tOH6gdDY07AZKnq4c6Vf06VrMweSTHuizb9he8hlrH
.33+r1XR7Hgtwc85LJUFp12cSYC18oqbS3Sm4JjgJuaVTTPy6U8lAdOlke+X
+vv1.ZVT7.2kYyySC81qhX2c2fe8hak9.isu31OvVxm8Pp6ysP9L2ffbl.sZ
gWcC84bYx7kyGHP0ckwZ6SoqShBBZNtk254tt0F1hh0dkFI.ZPdvdA+3BBqE
US6a725kl05hYtaSacoC4Ewt19U4K+eHyaGS68r1OQihzPik50Yc17FCxBsc
7Oj3tyfYbBevB.3FOUmdtquwRuomw.Bg5OSdjAJF.J4YbnuoF1IduqRXSAGp
Qidsr8pk8WtrIMOin8ILy98S8LX2wXeJazXj8jmAmcYPJ+hb9oFqihR13Gxl
jSa700v9Lbuy.vSbF.z3NGZu1.1rcjjBFBA0TNfTE+t5D3GhrUh68SrhNMnh
NAZUnLZtgVxji04BRpNDh8GzFXYOcvJegMxQZx6UGXk9h+WLvlKz0RQqovKT
57Mnzw.D3UJ8k.xd8sunMLiLALSls9EPF4JEx7qEH.SWd6jgKYp6zQLTb0fV
HsgVnoyC6JGt92zF+d7jorP13qZ18rNvPqDOQFWlKFu9UR7BKiah5YKQO3QM
SH4JQ1mgBhVh+.8fToLEXWWf94JDYzZVhY.TFW20bCf9Xox.FmjxembWwV0t
BiN0.NqcEKU6JzYuqPNETYdmfvp1ULm8tB5Tlfl2tB29W0WBMuDKJ2U5f.mY
wpz2jfqgNHYfNHrWdjx+n3p5MU2ktzkwheZtqGOlTosl65cLEgQOcNKsAyef
jXao6.Igd4Bjjg14BoyhJCGrIu2qpiv1yWn5zHzOy8YG9pIuC7CeL5TB6Z0g
TpdKiQMh9IRwtlbgpiQYFqLB3+adftQjALCsw+D6pc31RZzgkJHmrfsHWxW9
44qrgryK8Ii6b2mEwHM8WKxtkD2WjEDDFsJqGDbXYDo6Y.mYfIAEn4pBRsoE
Hf8G7D9xw5pfAQxwjfOUrDpWtCMHwkk0277m8hUjyD6xgwc7glwl8hzdQDsy
fkvx+cGe2rM9N1k+KQurj8sYbWItGyM+V72UALvDCGK5npXZUQ+gC.Iy5Ryq
hviItd4E5VQUGZZkzhQnsoMFIceCVtCPcDmZ+7LRFHxhHHDIb8tkrnqaRA+Z
PI7qAkvuFTBi0erspBAsJPjWE6rqY91aSu3NuVD+nAtuISmqZO05.+3m73j8
hADzdIPWtwFOzFvgUC5JrawJOFvnGE8ZIKk8uM9q4z2tIusnkGhbybqAd0QO
IvzfBs8SjKVpjs4+4e7C+iTlrnOj9p2N5G9lnWB4kxwzO7mih1X7Mtgq4A0w
29pHvCVtKtgW9K919renD.2E8ruG+Jsepfnn31SFxDCLLiIi3ANmy5tM6vts
.zXpLUDHzej67vaN7QdnXnwP08NXB..nNlKN7Y4NyQ98bSWeU6C8+g84eQfC
uMe.IxR+deBuvs4tBj0SX5trgyf6vdw9jZN6qiuljbf4iMCGvR3mW1FR7hiF
nm7XAIAnquAt8X0FIcAEhBTPEUdOeIBi5FDvDYMSQe4Fi9FNkwDTmeQBUBqn
BXJ7rcUW.KyxxrnCBT2Jlt965e1kMhSSVO3HthTu+lPF+SMnHMMwBJRzhtgn
iLUx60BqLJBs8tlK13F2+jYyYxa3++tW.TTVbFfzYsKSZ4CUpSws34fGhMk6
kD26HRtp9gbrZPxGOIWlNu+yQACrJo4j4.CZN99Pp255KXZ7H0Ds0xO6su64
XGb+fgo1TYvYJQqCDJqEEHryIo0PsxakNwrA0xhYr6RapE0j1ezHhzlhXSIL
BPVx7PTBpcbXrbkDCT4t8fo2CudhAQDiaE+peZSqSToroD3JHY.EfkVvBMwW
vPWYPBy2CMv.ssdFNsf8QVLoIVKgXrIB2Ywb85f7iuvsVYrq+RYmp.2PKYQJ
BbTmJfSYBtaN+fWYg.TezclSgtSFNwDrYI7QruVWu1pvApuktnoHJFK8KtIC
IKfPmq0PAcJ0SdXi5IOuDxWVO44ENMdLBnXrs0oWFGXqOFUzOOfyJOctLV.Y
0CTdZVPbN7Px4TbY+OElsA8MaCjy25d1Fcxy1j4a5l.E5Ahk6JNoiB6yuflt
ES3W9o6Yb0soL2QwzeRMcuyKKIRiBAMmhkS4mvBT3Ik7H0KJ4+TUq+oj+HxC
VZLSE1ewoz+gSAmvB17CjaD3mF572vdcok5F50dczTrAHujkPvkn4k0l8gfR
gCi7DZgLvZXxIhdCs6clJw4ielkVfd1pZ.E2Yb0JZhyju4NuViVU76FSZ7.Z
aI0u.MF0DnAeuUSjxE0XTAJnszoa5ZnH8IIt7mpofRisBOOO8OreFtw60gRP
fqETbR9KhoiLjWdlOQf7jAQzYNSzbTNoqLm+D.S4zhCSl8DLxT47tBM+Y6Dm
2nhoXj072YTsu3XMhzI5r1Co4zzm8LxhqtfhK6.yeFFRNUpqNwKz0QWjbgH5
Ngt3EJM.wJm+lPz7SzoLKstVqbdlQOst3EgOxIlQtWucvtj2dVlkQpq0A5BA
hp2EQlWJTz5TYPOmcFkU..N+cFn50Rf4WTOTYjAM+JRBUl4.7RQVehcwKgH.
n5R0GtXUTKQ9KSyI2m817fLYTdfW5Y8WsOSZ7YiLP5DSThsAQqbCxSBhxsyZ
3rlnJ4Jld4FnHV++5zNfP5qF.SF7z4SleWxM7HuB+0vQB8dTkeS2epuf3uQ.
7WNScPf6WizqU.6e+8hH1+96Egr+82+MQq2y8dA6Jeez9fTOuOaTFG+2e+5H
dn6m4c+8+EO+Ug9e41+ZHmN91e2+0+3+4a91+1eG.f+9a++91+iaQ.n8s+8+
129+9m99+a+u+96A3aCxekX+u7E2k6hq6wqlg9u3bUuUn+uH0KvacifH9l1A
naYpATyqQ8lV.+XiEwxyeBdt5DUb9Acfmeh8YS0oO4+XV2gG7heXuafe1akN
XKkGC6MdhzXOuM871OxOzKB666lSO2UDKK6UqiRRZfNsYRIGer49sYOsqmP3
eQZv9jZwxd6aWKP46ZrItV19PeteEE68r4AivffnWjbFpA0ciCGYHIhd8rDO
9o00wGx0nYXu45OmtPEVjWxCPa7Xp93DjbYQdwB6Rd3YmXrJd2s6Rm1YX0XN
6WyyxVnLiorfy7IWUVz1sUbpF0bMYLy01Thb24jy0fhedzC.5puSdBxj4kjG
nLUJwn0iDYd577PRDm6qw6gyxYiIAo2BDPAzJK6kT5E7rOaavxmbC2bTBrQd
Lhn4pTQAvIChPakV5Mi0ID4YwbyPEaSzdFs9p8O9nWRYnhU7mmuCvEhlKhP1
HQ4jljW1CU5HKdNKSK7hdyJCuD2zYhxcD0DD7fGIE1xRpRsBSphvWwukC1Y.
K+AY3vgLtykoOzy8VGalHWTKMyE0BWmKZmU6hyl1H4rRS7BYVq2jgPYvN.jG
R1howGphPTv4jsfEVy0VLIYsoL7OySaoy.aAMn.r4XN+RsnfZ59cQU.NcPEf
U0J.6QTlYLwxYarTAX7LVOCYCRO2oU2FwViXHleHJjeHWXpigXuJvdXNdpxo
AnhkQHjyXLyKulPHMyinzwx1kcwLZLGS3lxrOJ+XO5rrXVGC0wv2xTFsQmyg
ZeKoW+15.OCzzvfwbtJWfAR2lpzgo7ro8p+NujIUdvPnwi.H7A0t7dQ.Q0Oc
tfgMtq+5jPAHXL0j27S8LaPmUv8Kzx5wv.i6aFd0bkXUc.HdIWZGEujKt1Oa
+FudlXMUj7dDT2EG7Qxf1kZdBphVK7wqvC460LTIywm1avVAJcXnQ1L7O5qj
Y6TaS05bBQ8FTk1iBzV6QopzflM2Y+1ap4YoKX1SW.pit.QIXudYjehMHVoF
TeSyHUZOar9ZPnRMn9V3PUZkpCReMnJsGFOmKbTpGf5oGfNa8.vLtx09byvT
zf3iRXS0aChNZCZq2FDdzFb1mUOZWvxdFWbYqDsssk9fckjA4.ahL5cLqlXP
xbNyapDrSzljXakjLZoOAU1JIYjpOAU1JIYzViMnJsGRayfVmjHfYgpUstfE
cF4WYYqLcrlfcxYlrxRsUpP80fJsR0YNYGpVWvZN0xTzEPp1EzQCBNkwrNZP
kr+jns1inD2BzbZysZcA3bRZSTSAK6KdWvbNYaSHJquilH9TRAKQ1SfzSChU
tA0ifIhZxIzmIgDkXRSzmjPSGkgTM0fTkk0Cmo0pp0EZkmf5cspo8ovtPGMn
RRlr02RGSk3FoOlQlJwLhnOq8LUiYjFmBQJ4LEy4jrUot.gLi9ITstPu6x.T
WcAk2kAczfpYmOcNgcnJv972ENNJzG8O97gBydWPIWhLaLATBDl8dvwM4XNc
SiZffnKLapwnjwsX8I.BqjHcS8YMM1TUcHziHcrRhzI5iwNVMII5yiwX03dn
woP0h5AM1fJom6LJlRoNvbFABJ0AZcf2qW9yH0bau97aORIqaf5aiMQDkGgZ
pAUhUn9XTfvJIj2VuM3wQT8YvHRIdu34zogp0EPNy39zhN2JQnlDu4LRSTad
eNMfDcJBgKdpc9apePzgAP4gUkLsDjmrBM+KnLFeMwNk+0LQEAcNyTQPkjv.
0WHU.MOyQuIDoLjpGmqCU1vRbewGaqCHZQS09fgt8gBcGGHzCbXPevAAcd0k
QFCwsiM2xbZy8wWeyiWPHxik35UN0ZXBO5kEYiWQMbf.fNVvaZ7oV0BjFYe2
GaEt00SrtOVjZcUnWdmIycUqNhWfGu60nuXRfN1N2z4mZzgZ7VV1ND.ULBHT
HVL..VPjUqWpbn+feHeNrrvbPYuEfbSmeBVOR4yGLE41TyATSPpImnUaezOH
nrW2n9xTDf1K1l3twmOiUVAeDu.rnah.lP.5FYAgG5PkCTDl+oFE3D46gJwG
pXDU+Wc73kshCmLf+jXfCEXJ+jjxn4q4FtM+fz1t9Q.cbRD+fxr3nEeI1o5M
1mEUNJE2z14fJnTODTGYVTjkKroMH0BaWmFt8b29fL+z.+MkmJ7+3gzT89kU
Me1DyN1LSqNQraBup.0Nm.jctRIvMYxUtP+ENeCicQgQow7zjM+cyO50UXUl
MECME8VaG1.T7IpIjIX8fQ43oZOcxo5D6vbDu5G8RcSsP1lxkr1.BkJ+D0DO
GzqGiX86hBcWGsnGFU.nEvQvTC.gThjUK.iIlCSd4XaynptofrzwgfsvpxbC
bSseLJhQvPDi6P.HAPP.2gIDcWutMcHCA.NRhODxT9IL.vIMaLz5lFF3.EDS
T1BMnbVmMmaQutng4yVNN1lEexAdDpYH1FHHLnHaKrYNaHJx4piZl0qnBdGH
lrxbPg.wsW2c.wLarXJDR6XSIDa4mPHH57SQyeS1u9WvO87WS
———–end_max5_patcher———–
</code></pre>

Project 1 Proposal

Similar to my project in Experimental Sound Synthesis, I want to work on making rave visuals. Now having a better understanding of jitter and video processing, I think I can make even more interesting visual patterns. I also want to make these visuals responsive to a sound input similar to our FFT in class examples instead of relying on MIDI clock data. Also, instead of taking videos and altering their playback like I did in the last project, for this project I want to do more generative original visual patterns.

Assignment 3 – A TV Theme Song in Different Spaces

For this assignment I took a midi mapping of the Gravity Falls theme song and ran it through a electric piano instrument in Ableton to create a totally reverb-less audio track. I think fed it through the convolution reverb with a IR taken from my bedroom, an IR taken from popping a balloon in my backpack while recording from the outside, a church bell, and an accordion. I then took each of these tracks and cross-faded between them to create a piece. The IRs and individual tracks can be downloaded here.

 

 

I am sitting in a PVC pipe – Arnav Luthra – Assignment 1

The first idea I had for this assignment was to feed my name into the Wu-Tang Clan Name Generator and then feed the input of that back into itself over and over I did this 5 times and got the following:

Arnav Luthra -> Arrogant Menace -> Lazy-assed Killah -> Vizual Professional -> Annoyin’ Bstrd -> Shriekin’ Hunter

I didn’t really get any meaningful insight into the system so I decided to do something else.

Similar to I Am Sitting in a Room, I recorded myself briefly speaking but then fed it though Max for Live’s convolution reverb(set with the impulse of a PVC pipe) and repeated the process to yield the following:

It sounded harsher overall compared to the original I Am Sitting in a Room. This could be due to the resonant frequencies of a PVC tube. Also there was a certain warmness in the original that likely stemmed from some form of tape distortion.