Final Crit: Workplace Safety Equipment

Problem

In recent weeks, workplace safety standards have come under scrutiny, after an incident where an Amazon employee suffered a fatal heart attack while on the floor with no one around to help for twenty minutes after the fact. The labor sector of the economy can cause a variety of health risks, caused by falls, drops, and repetitive stress. Additionally, accidental misuse of heavy machinery, or lack of awareness of ones surroundings can lead to fatal consequences.  There are a variety of technologies that can tackle workspace related injury, this experiment covers responding and communicating physical stress.

Solution

An suite of auditory and visual feedback systems would allow workers to maintain there safety in an intuitive fashion. The first device is a fingerless glove wearable that reads the temperature of an object, and indicates that temperature to the user in the form of color. Green implies handilability, red implies heat, and blue implies cold. If the object is not handleable, the wearable will vibrate as a warning.

The second device is a stress sensor. If the user is physically stressed, or if the user is experiencing and irregular heartbeat, the sensor will begin playing a patterned noise, indicating to others that they are either performing a laborious task, or that they need assistance.

The third device is a personal alarm, embedded into a vest or article of clothing. It requires two distinct buttons to be pressed at the same time. If the user feels that they are having a serious medical event, or are injured, or see another person that is in need of assistance, the user can press these buttons, which will trigger an alarm.

Proof of Concept

The first device was prototyped using the onboard neopixel from a redboard turbo, an I2C OLED, and a tactor motor. The I2C OLED stated the current temperature, read from an MLX non contact temperature sensor. The neopixel and tactor perform as noted above.

The second device prototype utilizes an electromyograph sensor, which reads signals from muscle impulses. When the rating reaches a threshold, a piezo speaker plays a tune.

The third device uses two force sensors as push buttons, and uses a speaker to play an alarm.

IMG_0160

IMG_0159

IMG_0157

FinalCrit

Crit #3: Vision Impaired Evacuation Demo

Problem

To users unfamiliar with building  and who may be visually impaired, exiting a building during an emergency can be hazardous and confusing. Most of the time, exits are signaled by glowing “EXIT” signs with symbols next to them. How can users exit a building in a calm and organized fashion?

Solution

A tactile and auditory guidance system based on sensing user location would afford the visually impaired and those unfamiliar with there surroundings a sense of direction in the case of an alarm going off. Sequenced vibrations would lead users to speakers, which would continue to give users instructions, leading to the building exit.

Proof of Concept

A series of sensors (or pushbuttons in this case) indicate checkpoints that trigger the exit path. An array of tactors allow the users to feel directioned vibrations in there feat (or arms if it were attached to something akin to a guiderail). At a checkpoint, a speaker would play a prerecorded message, instructing users as where to go next.

crit3_movie

crit3

Assignment 8: Weather Notifier

Problem

People can often be unprepared for the days weather, and upon getting ready in the morning, they rarely check the weather until after getting dressed and ready. How can this process be made more efficient?

Solution

An emotional notification system that informs users of the weather using sound, vibration, and light would grab sleep-weary users attention, while communicating to them the types of clothing and gear that they would need for the day.

Proof of Concept

A solenoid, tactor, and servo would serve as indicators from weather and temperature.  Each will be paired with an led to further emotionally communicate the weather state. The solenoids led pulses twice, and then the solenoid strikes twice, simulating lightning and thunder. The tactor and its led “shivers” indicating cold weather. The servo slowly rocks back and forth, indicating warm weather.

Assignment_8

Assignment 7: Smart Weight

Problem

For gym enthusiasts lifting heavy weights, bad form can result in weeks off from the gym. However, injuries are not always instant and even the slightest odd angle in a squat, repeated over time, can result in debilitating pain.

Solution

A smart weight that “talks” to the user, using sound, would be ideal to help correct lifting form. Gyroscopic sensors that detect movement, angle and altitude can be used for a variety of exercises to determine proper form. If the user’s form is off, the weight will speak to them, making a different sound for different aspects of form that are not correct.Proof of Concept

A gyroscope and microphone simulates a barbell weight. When the bar is tilted left, the pitch of the sound goes up, when the barbell is tilted right, the pitch goes down. A button is used to simulate grip, telling the system to begin recording accelerometer data.

smartWeight

Crit 2: Key Fob Reminder System

Problem:

The blind and memory impaired can often have issues remembering small objects.  Keys, phones, and wallets are all easily misplaced items. Forgetting commonplace but important items can be especially frustrating and cause issues for people, especially if the behavior is repeated.

Solution:

A system that relies on RFID tags embedded in a keychain or fob can remind users if they left there devices on tables as they were leaving the house, as well as causing the device to ping when approaching household points of entry when needing a key, would afford users as to where there common household items were during. Items can become “lost” or misplaced even in book bags, and this system would allow for the user to feel a distinct “ping” for each device.

IMG_0069

Proof of Concept:

A system of RFIDs that signify whether a user is exiting or entering a common entrance would allow the reminder system to ping both the user and the device, and allowing the user to manually ping keys by pressing a button and triggering a dime motor.

Crit2

Assignment 6: Physical Smoke Detector

Problem

Rabbit Laser Cutters have dark UV protective paneling to protect users from being exposed to bright, potentially vision damaging light. However, laser cut peices can begin smoking, and even catch fire. This presents a problem, how can user respond to fire and smoke events?

Solution

A visibility detection system paired with a motor would allow users to be afforded of an incoming smoke or fire issue by detecting drastic increases or decreases in visibility. The visibility detection system would be placed inside the laser cutter, while the motor would be attached to a wearable device, or atop the laser cutter to bump into it repeatedly in different patterns, creating different noises based on the situation and vibrations on the user’s person.

Proof of Concept

A series of temperature sensors would serve as the detection system. It would sense whether there was obstructed vision, either being too bright, signifying a fire, or too dim, signifying smoke. A solenoid would tap in a slow pattern to signify smoke, and tap in a hurried, frantic pattern to signify fire. The solenoid would be either attached to a wearable device, or attached atop the cutter itself, to tap against the machine and make noise, signifying to the user to press the emergency stop.

smokeDetectorlow

Assignment_6 2

Assignment 5: Blind Spot Warning System

Problem

How does a vehicle operator gain agency over potential objects in their blindspot? Often the solution is to check all mirrors, but there are very realistic occasions in which this does not work.

Solution

A series of vibrating and tapping motors would allow drivers to tell if there were vehicles or objects in there blindspot. The array of devices would be positioned under the seat and in the seatback, pulsing the left or right side to indicate blindspot object position. Additionally, while parked with the car off, the doorhandle would vibrate if the vehicle sensed incoming objects, such as in the case of a cyclist approaching the driver side door.

Proof of Concept

An ultrasonic sensor would serve as an object detector. When the ultrasonic senses an object in the near vicinity, the device will signal a solenoid motor to tap every few seconds, assuming the “vehicle is running”. If the vehicle is in fact not running, the device will signal the “car handle” dime motors, depending on which side the object appears.

hapticDrivingDemo

assignment_5

 

Crit 1: Cycling Tire Monitoring System

Problem

In the manufacturing of physical goods, it is often difficult to test for small defects. In the case of products such as rubber cycling tubing, small, hard to detect perforations can become much more troublesome for clients in the lifecycle of the product. Additionally, it can be difficult for active cyclists to focus on identifying non major leaks and gradual changes in tire pressure on long rides.

Solution

A mounted sensor array focused on detecting both leak frequencies and changes in tire pressure can be used to streamline the tire quality assurance process, and help signal the need for tire patching or tubing replacement on the fly for cyclists. Using microphones to pick up sounds within common frequencies for leaks, as well as using an air pressure sensor to track significant changes from an ideal benchmark can be used in concert with visual indicators to help identify tears and deformations.

crit1

Proof of Concept

The sensor array would have a visual indicator tied to each sensor to attempt to give users an idea of where a leak would be happening, or if tire pressure was being lost. After attempting to use an LCD to provide descriptive error messaging, I decided to use a series of LCDs in concert with microphones to simulate air pressure leaks, as well as a flex sensor to simulate an air pressure sensor.

Crit1

Assignment 4: Deaf Alarm

Problem

The standard alarm clock does not cater to the deaf and hearing impaired. They primarily rely on sound, and very occasionally, vibration. How do the hearing impaired wake up in the morning without having to keep uncomfortable vibrating wearables on throughout the evening?

Solution

A pulse-width modulated led alarm built into a wearable sleep mask or pillow would allow the deaf to be awakened in a flash. This alarm could also serve as an unobtrusive method for allowing an individual in a room to wake up, rather than waking up every party in a room at the same time.

Proof of Concept

A light based wakeup alarm would give the hearing impaired the ability to program wakeup times, colors, and light patterns. This would allow users to find the most appropriate settings for there wakeup routine. For instance, a softly increasing power would allow for a more calm morning wakeup, but if a user needed to be sure that of there wakeup in the morning, they could use a bright flashing setting. It currently uses a yellow led and momentary push button to change the state from on to off.

deaf_alarm

lightAlarm

Assignment 3: Smart Kettle

Problem

Many hot prepared drinks are actually supposed to be prepared at temperatures significantly under boiling temperatures. However, when using a kettle, it is difficult to tell what temperature water is at, as the only feedback it can give is a whistling noise. Additionally, deaf and hearing impaired individuals are unable to tell when a kettle has reached boiling by listening to the whistle.

Solution

A Smart kettle that is able to keep track of the temperature of the beverage that it is holding, letting users know when to brew and drink different types of drinks.

Proof of Concept

The smart kettle would give users the ability to understand the temperature of the water that they are boiling by use of a series of different colored LEDs. For instance, red would serve as the hottest temp, denoting an appropriate temperature for making black tea or coffee,  yellow would serve as the next indicator for white tea/green tea or hot cocoa, green for drinking tea/coffee and blue for too cold. It uses an TMP36 temperature sensor to track the state of the liquid in the container.

a3_stateMachine

tempStateMachine480